
Toward Message Passing Failure

Management

A Dissertation

Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Wesley B. Bland

May 2013

c© by Wesley B. Bland, 2013

All Rights Reserved.

ii

This dissertation is dedicated to my very supportive wife Julie.

iii

Acknowledgements

I would like to thank the members of the Innovative Computing Laboratory and its

support staff for all of the opportunities that they have provided to me, and students

like me. I would specifically like to thank my research group, George Bosilca, Thomas

Herault, Aurelien Bouteiller, Stephanie Moreaud, Teng Ma, Peng Du, Wes Alvaro,

and Blake Haugen for their direction and advice throughout my studies. I would also

like to thank Sam Crawford for his many efforts of editing support. To my family,

who have provided support, advice, and understanding, I cannot thank you enough

and will continue to covet all of those things in my future endeavors.

iv

I see God in the instruments and mechanisms that work reliably.

–Buckminster Fuller

v

Abstract

As machine sizes have increased and application runtimes have lengthened, research

into fault tolerance has evolved alongside. Moving from result checking, to rollback

recovery, and to algorithm based fault tolerance, the type of recovery being performed

has changed, but the programming model in which it executes has remained virtually

static since the publication of the original Message Passing Interface (MPI) Standard

in 1992. Since that time, applications have used a message passing paradigm to

communicate between processes, but they could not perform process recovery within

an MPI implementation due to limitations of the MPI Standard. This dissertation

describes a new protocol using the exiting MPI Standard called Checkpoint-on-Failure

to perform limited fault tolerance within the current framework of MPI, and proposes

a new platform titled User Level Failure Mitigation (ULFM) to build more complete

and complex fault tolerance solutions with a true fault tolerant MPI implementation.

We will demonstrate the overhead involved in using these fault tolerant solutions

and give examples of applications and libraries which construct other fault tolerance

mechanisms based on the constructs provided in ULFM.

vi

Contents

1 Introduction 1

1.1 New Fault Tolerant Approaches . 3

1.2 Dissertation Statement . 5

1.3 Outline . 5

2 Background & Related Work 6

2.1 Terminology . 6

2.1.1 Failure Model . 8

2.2 Message Passing Interface . 8

2.2.1 Other Communication Libraries 9

2.3 Types of Fault Tolerance . 11

2.3.1 System-Level vs. User-Level Fault Tolerance 12

2.3.2 Checkpoint/Restart . 12

2.3.3 Migration . 16

2.3.4 Replication . 17

2.3.5 Algorithm Based Fault Tolerance 17

2.3.6 Transactional Fault Tolerance 19

2.4 MPI Level Fault Tolerance . 19

2.4.1 Open MPI . 25

2.5 Conclusions . 26

vii

3 Design Goals 27

3.1 Flexibility . 27

3.2 Resilience . 28

3.3 Performance . 28

3.4 Productivity . 29

4 Checkpoint-on-Failure 30

4.1 Existing Error Handling in MPI . 30

4.2 The Checkpoint-on-Failure Protocol 31

4.3 MPI Requirements to support CoF 33

4.4 Open MPI Implementation . 34

4.4.1 Resilient Runtime . 34

4.4.2 Failure Notification . 35

4.5 Example: QR-Factorization using CoF 36

4.5.1 ABFT QR Factorization . 36

4.5.2 Checkpoint-on-Failure QR . 38

4.6 CoF Performance . 39

4.6.1 MPI Library Overhead . 40

4.6.2 Failure Detection . 40

4.6.3 Checkpoint-on-Failure QR Performance 42

4.7 Evaluation of CoF . 45

5 User Level Failure Mitigation 46

5.1 ULFM Design . 46

5.1.1 Failure Reporting . 46

5.1.2 Rebuilding Communicators 50

5.1.3 Failure Discovery . 53

5.1.4 Wildcard MPI Receive Operations 54

5.1.5 Process Consistency . 55

5.2 Beyond Communicators . 57

viii

5.2.1 Failure Notification . 57

5.2.2 ULFM Functions for One-Sided Communication 59

5.2.3 ULFM Functions for File I/O 59

5.3 ULFM in Applications . 60

5.3.1 Example: QR-Factorization 60

5.4 ULFM Performance . 62

5.4.1 MPI Overhead . 62

5.4.2 ABFT-QR Factorization . 65

5.5 Evaluation of ULFM . 70

6 Fault Tolerant Applications and Libraries 71

6.1 Types of Fault Tolerance . 72

6.1.1 Automatic Methods . 72

6.1.2 Algorithm Based Fault Tolerance 73

6.1.3 Transactional Fault Tolerance 74

6.1.4 Collective Consistency . 74

6.2 Library Construction . 75

6.2.1 Initialization . 75

6.2.2 Status Object . 76

6.2.3 The Three R’s . 76

7 Future Work and Conclusions 80

7.1 Summary . 80

7.2 Future Work . 82

Bibliography 83

A Process Fault Tolerance 93

A.1 Introduction . 93

A.2 Failure Notification . 94

ix

A.2.1 Startup and Finalize . 95

A.2.2 Point-to-Point and Collective Communication 95

A.2.3 Dynamic Process Management 97

A.2.4 One-Sided Communication . 98

A.2.5 I/O . 98

A.3 Failure Mitigation Functions . 99

A.3.1 Communicator Functions . 99

A.3.2 One-Sided Functions . 102

A.3.3 I/O Functions . 103

A.4 Error Codes and Classes . 103

A.5 Examples . 104

A.5.1 Master/Worker . 104

A.5.2 Iterative Refinement . 106

B Library Composition 108

B.1 Main application . 108

B.2 Library 1 . 131

B.3 Library 2 . 143

Vita 155

x

List of Tables

1.1 Machine size and Linpack runtime on top machines on Top500 2

4.1 The Checkpoint-on-Failure Protocol 32

5.1 NetPIPE results on Smoky. 63

A.1 Additional process fault tolerance error classes 104

xi

List of Figures

4.1 Pattern to store checksums to prevent data loss in the event of multiple

failures. Figure borrowed from [32] 37

4.2 Failure detection time, sorted by process rank, depending on the OOB

overlay network used for failure propagation. 41

4.3 ABFT QR and one CoF recovery on Kraken (Lustre). 42

4.4 ABFT QR and one CoF recovery on Dancer (local SSD). 43

4.5 Time breakdown of one CoF recovery on Dancer (local SSD). 44

5.1 Application discovers failure and encounters deadlock 48

5.2 Application discovers failure and recovers using MPI_COMM_REVOKE . . 50

5.3 Intermediate node failures report as MPI_ERR_PROC_FAILED 53

5.4 Application reaches inconsistent state after some processes exit before

other processes . 55

5.5 Relative difference between ULFM and Vanilla Open MPI on Shared

Memory . 62

5.6 Comparison of Sequoia-AMG running at different scales with ULFM

and Vanilla Open MPI . 64

5.7 Weak-Scaling performance of ABFT-QR on Grid5000 ’Graphene’

compared to ScaLAPACK in both Vanilla Open MPI and the ULFM

version . 65

5.8 Overhead of ABFT with Vanilla Open MPI and ULFM MPI 66

xii

5.9 Strong-Scaling performance of ABFT-QR on Grid5000 ’Graphene’

with no failures and one failure . 67

5.10 Overhead of one failure with ABFT-QR on ULFM MPI 68

5.11 Recovery time of MPI and Data (via ABFT) on Grid5000 69

6.1 ABFT QR and one CoF recovery on Kraken (Lustre). 78

xiii

Chapter 1

Introduction

As High Performance Computing (HPC) passes petascale and moves on to exascale,

new challenges have emerged which necessitate a change in the way large scale

operations are designed. As of the November 2012 Top500 list [7], machines at the

top of the list have now surpassed the million-core mark. Based on the foreseeable

limits of the infrastructure costs, an Exaflop-capable machine is expected to be built

from gigahertz processing cores, with thousands of cores per computing node, thus

requiring millions more computing cores to reach the needed level of performance.

At this scale, reliability becomes a major concern. 2007 reliability, availability, and

serviceability data analyzed by Schroeder and Gibson [54] show an average number of

failures per year between 100 and 1000, depending on the system. Later projections

found in Cappello’s paper [21] predict a future mean time to failure (MTTF) of

approximately one hour. With failures of that frequency, capability applications will

not be able to complete without considering a model for handling hardware failures.

Table 1 shows the machine size and runtime of the Linpack benchmark on some of the

the top 10 machines in the November 2012 Top500 list. This data shows that while

cores sizes increase, runtimes approach and sometimes surpass the 24 hour mark for

capacity applications. Machines with a shorter time to completion demonstrate an

interesting new trend toward including accelerators in HPC machines; however, they

1

Rank Machine Name Number of Processors Runtime (hours) Tflop/s
2 Sequoia 1572864 23.13 16324.8
3 K Computer 705024 29.47 10510.0
5 JUQUEEN 393216 11.85 4141.2
6 SuperMUC 147456 9.00 2897.0
7 Stampede 204900 1.56 2660.2
8 Tianhe-1A 186368 3.37 2566.0

Table 1.1: Machine size and Linpack runtime on top machines on Top500

also distort the number of cores counted for the purposes of the list. In reality, the

number of processors is higher when accelerator cores are included and therefore the

mean time to failure is decreased again. The implications of applications running

longer than one day with mean time to failures plunging to an hour are not positive

for future HPC productivity.

Capability workloads are not the only applications which motivate the drive for

fault tolerance. Current, long running applications already have reached running

times of multiple days or weeks on smaller scale machines. Even in this scenario,

the likelihood of encountering a failure is non-negligible. For the sake of continued

scalability, both in terms of numbers of processors and execution time, applications

need to be able to continue executions despite hardware failures.

Beyond traditional high performance computing environments, other new areas of

distributed computation have also emerged which produce similar needs. Volatile

resources such as cloud and grid computing environments have been considered

unsuitable for more traditional distributed computing models because of their

constantly changing set of resources. If the underlying programming model could

support the kind of drop in, drop out behavior that volatile environments need, they

could become a lower cost set of tools available for developers. Previous tools (such

as HTCondor [57]) have provided an environment for these types of applications, but

many codes are already implemented in MPI and the cost of porting the applications

to another environment is viewed as too high to warrant the move.

2

Another area which could benefit from a resiliency model is energy efficient

computing. By allowing applications to continue execution beyond failures, expensive

recalculations become unnecessary, saving both energy and computation hours. For

both of these computing models, a programming model needs to be dynamic to

support new types of computing.

As will be discussed in Chapter 2, the need for resilience at scale is not a new

discovery and has been proven through many previous studies. However, an important

factor required for wide adoption, which is often ignored, is usability. Many previous

efforts to introduce fault tolerance methods into high performance computing have

gone un-utilized because they were either too difficult to use or required large changes

to existing codes. For any tool to be employed, it must not only fulfill the need of the

community, but also be compatible with the other existing tools. Developers need

to be able to add fault tolerance into their existing codes with as little disruption as

possible.

1.1 New Fault Tolerant Approaches

Previously, the problems discussed above were solved by employing strategies such

as transparent rollback recovery or explicit checkpoint/restart (both synchronous

and asynchronous). These solutions were sufficient because the bottlenecks that are

now becoming hindrances to performance were not yet limiting factors. Now, as

algorithms strive to reinvent themselves by creating self-healing techniques, they need

a communication library which can provide performance and portability to support

them.

In this work, we provide two new fault tolerance models from which application

and library developers can chose to solve these problems. We use the de-facto

programming environment for parallel applications, the Message Passing Interface

(MPI), to provide a familiar, portable, and high performing programming paradigm

3

on which users can base their work. The new models are called Checkpoint-on-Failure

(CoF) and User Level Failure Mitigation (ULFM).

CoF CoF is an MPI-3 standard compliant method of providing a form of fault

tolerance which employs traditional checkpointing schemes but does so using

an optimal number of checkpoints, therefore vastly improving the amount of

overhead over traditional periodic checkpointing methods.

ULFM ULFM is a new chapter proposed for the MPI Standard which introduces

a new set of tools to create fault tolerant applications and libraries by allowing

the applications themselves to design their recovery methods and control them

from the user level, rather than an automatic form of fault tolerance managed

by the operating system or communication library itself.

These two models are designed to serve different types of applications. CoF

is for specific classes of applications which need all processes to be available at

all times. Many of these applications might currently be using checkpoint/restart

style fault tolerance to resolve failures but incur a large overhead from periodically

writing checkpoints to disk, waiting through a batch queue after a failure impacts the

application, and restarting the application from the checkpoint.

CoF resolves each of these issues by removing unnecessary checkpoints, main-

taining a functional runtime layer to prevent jobs from being reinserted into the

batch queue, and allowing checkpoints to stay in local scratch space, possibly even in

memory, to improve both checkpoint and restart times.

On the other hand, ULFM is designed to be a solution for a more broad set

of applications. Rather than providing a specific solution to insert fault tolerance

into applications, ULFM is a platform on which many fault tolerance solutions can

be built. By implementing a fault tolerant library on top of ULFM, applications

can utilize a portable fault tolerance solution which functions with any MPI

implementation that follows the specification.

4

1.2 Dissertation Statement

The goal of the dissertation is to demonstrate novel methods of fault tolerance

supporting Algorithm Based Fault Tolerance (ABFT) for large scale systems using

the message passing paradigm with extensions to facilitate concurrent approaches to

cope with failures. By allowing applications to continue execution after a hardware

failure, algorithms can support larger scale and longer running executions which were

previously found to be unattainable.

1.3 Outline

This dissertation will describe the new tools developed to handle failures at the

application level while evaluating their performance impact against a failure agnostic

MPI implementation. Chapter 2 will provide some background for current and

classical research including a survey of existing parallel computing and fault tolerance

tools. Chapter 3 will outline the design goals of the fault tolerance techniques

described in this dissertation. Chapter 4 will introduce and evaluate the CoF

method of failure management. Chapter 5 will describe the ULFM proposal and its

implementation along with an evaluation of the overhead introduced and an analysis

of an application which uses the new ULFM constructs. Chapter 6 will describe

how some existing fault tolerance techniques could be adapted to use ULFM. Finally,

Chapter 7 will summarize the research and discuss ongoing and future work related

to this dissertation.

5

Chapter 2

Background & Related Work

Fault tolerance and message passing communication libraries are not new ideas in high

performance computing. Fault tolerance began as a solution for unreliable hardware,

specifically when building Network of Workstation (NoW) clusters where the systems

were not high quality machines. As machines evolved and became more reliable, the

challenge shifted from the reliability of a specific piece of hardware to the reliability

of the system as a whole. The scale of current HPC machines necessitates the study

of new methods of fault tolerance to continue execution on functional machines, while

excluding failed machines from applications. In this chapter, we will explore previous

efforts in these areas to provide adequate context for the subsequently presented work.

2.1 Terminology

Whenever a discussion of fault tolerance takes place, the terminology being used must

first be well established, as many words have evolved to have overlapping definitions.

For the purposes of this dissertation, these words will be defined as follows:

Fault – A fault, or error, occurs when some defect, whether hardware or software,

is detected. Examples of faults include memory errors due to radiation, data

6

corruption on a hard disk, or a programming error which causes a program to

crash.

Failure – A failure is caused by an error when the system cannot mitigate the results

of a fault and no longer functions correctly. When a machine ceases to function

and the system cannot resolve the issue by automatically repairing the error, it

causes a failure.

Fail-stop Fault – A fail-stop fault is a fault which impacts one or more processes and

will never be repaired without intervention from the application. An example

would be component failure or a total system failure, such as loss of power. In

this scenario, the failure cannot be resolved without outside intervention, such

as hardware replacement or power restoration.

Transient Fault – A transient fault occurs periodically, but is resolved without

intervention from the application. While the fault is causing the system to

conclude that a failure has occurred, it is indistinguishable from a fail-stop

fault. The most common form of transient fault is a slow network connection,

which causes a process to conclude that another process has failed, later to

discover that the process is still alive, but could not communicate within the

expected window of time.

Byzantine Fault – A Byzantine fault causes unpredictable, often undetectable

failures by causing the program to behave incorrectly, but not necessarily to

stop functioning. An example of a Byzantine fault is to have malicious software

purposely attempt to cause a system to behave incorrectly, or to have a memory

corruption error change the system state from one valid state to another valid,

but incorrect, state.

7

2.1.1 Failure Model

For the purposes of this dissertation, we will not consider transient or Byzantine

faults, only fail-stop faults. Transient faults should be treated as fail-stop faults and

be prevented from further participating in an application. Byzantine faults are much

more difficult to mitigate and doing so is outside the scope of this work, though

research has shown that managing generic Byzantine faults is NP-hard [44].

2.2 Message Passing Interface

The Message Passing Interface (MPI) [58] is a standardized set of routines written

by its governing body, the MPI Forum, used to simplify communication between

processes in a parallel application by adopting a message passing abstraction.

Processes construct messages using the routines found in the MPI Standard.

These messages are sent through an MPI implementation which provides such

communication structures as point-to-point messaging, collective communication

operations, reduction operations, and more recently, process management, one-sided

communication, and file I/O.

Periodically, the standard is updated to adopt new technologies as they become

more mature and make corrections to previous versions. Version 1.0 was published on

May 5, 1994. In 1995 and 1997, versions 1.1 and 1.2, respectively, were published with

corrected errata from the previous versions. Also in 1997, version 2.0 of the standard

added many new features, in particular, process creation and management, one-sided

communication, new collective communication operations, external interfaces, and

parallel I/O. Minor edits and errata were corrected in versions 1.3, 2.1, and 2.2,

released in 2008 and 2009. In September of 2012, the most recent version, 3.0 was

published to add nonblocking collectives, new one-sided communication operations,

and new Fortran bindings to the standard. The MPI Forum is currently convening

to discuss MPI 3.1 and MPI 4.0 for future release.

8

Many implementations of the MPI Standard have been written to fulfill a wide

range of purposes. Some, such as Cray MPI, are tightly coupled with a particular type

of hardware to run most efficiently and have proprietary code which is not open to

the public. Others, such as Open MPI [8, 37], MPICH [4, 18], MVAPICH [5, 40] and

older implementations such as LAM/MPI [19, 55], are designed to run on a variety of

hardware and are open source, allowing modification by any user who wishes to add

a feature or fix a bug. Some implementations, such as FT-MPI [34] and Adaptive

MPI [14], are designed not only to implement the MPI Standard as defined by the

MPI Forum, but to add additional features such as fault tolerance, process migration,

load balancing, and more.

In this dissertation, we use MPI as a basis for all work. It provides the

communication mechanism which we harden by extending the definition of the MPI

Standard to include fault tolerance. In the meantime, we gain the experience of the

research that has gone into providing a complete and optimized set of communication

tools.

2.2.1 Other Communication Libraries

PVM

While MPI has become the most popular communication library, it is not the only

mechanism available. PVM (Parallel Virtual Machine) [56] existed before MPI and

provided a view of the machine as a large “virtual machine” abstracting the underlying

hardware and network topologies. In this sense, PVM was designed to provide

simultaneous, large-scale computing across a range of machines while presenting a

simple, easy to understand interface for the programmer. It accomplished this model

by providing tasks as the basis for a PVM application. Each task is deployed onto

a host from a pool of available hosts, and hosts can be dynamically added and

removed from the pool at runtime. PVM also used message passing to perform

its communication, but the task system also facilitated other features, including

9

fault tolerance and heterogeneity. By allowing hosts to enter and leave the pool

dynamically, process failures did not have to cause the entire application to fail.

Instead, the failed processes were excluded from the host pool and most hosts were

selected to replace them.

Charm++

The idea of portable tasks as the fundamental piece of an application was expanded

on in Charm++ [43]. Developed at the University of Illinois at Urbana-Champagne,

Charm++ is a programming language based on C++. Applications are again

broken down into tasks, called chares, and virtually mapped onto processes with

an “intelligent runtime” system which dynamically evaluates all running applications

to put chares in the most appropriate location on the system. Another feature of

the intelligent runtime is that it can manage the deployment of chares even after

they have started execution. When the runtime detects that the deployment of

chares is imbalanced among the nodes, it can automatically migrate processes on-

the-fly to better balance the computation load and increase performance. This also

provides fault tolerance at a fundamental level as chares can be replaced on the fly

without restarting the entire application. Charm++ was later used to create an MPI

implementation called Adaptive MPI [14] which included many of the features from

Charm++, such as migratable processes and fault tolerance support.

Partitioned Global Address Space

Partitioned Global Address Space (PGAS) languages strive to simplify programming

techniques by allowing applications to refer to data arrays as if stored locally, while

automatically managing data distribution within the library implementation. A

number of programming libraries and languages strive to provide this capability.

Chapel [20] (the Cascade High Productivity Language) is a parallel programming

language developed collaboratively by Cray, academia, industry, and scientific

10

computing centers. Fundamentally, Chapel abstracts away much of the challenge

of high performance computing. It is specifically designed with four main goals: mul-

tithreading, locality-awareness, object-orientation, and generic programming. These

goals allow the user to achieve high performance while simplifying programmability.

Despite its goals, Chapel has still not reached the level of adoption of MPI.

Unified Parallel C (UPC) [22] extends the ISO C 99 Standard by adding,

in addition to PGAS abilities, synchronization primitives and simpler memory

management. Like Charm++, UPC can be implemented on top of MPI, using

MPI as the communication mechanism while simplifying programmability through

its language extensions. High Performance Fortran (HPF) [51] tries to provide many

of the same capabilities, but with the FORTRAN 90 specification instead of C.

Global Arrays (GA) [1, 47] is similar, but attempts to provide more portability and

interoperability with other parallel programming libraries, such as MPI by providing

a library interface, rather than an entirely new language.

2.3 Types of Fault Tolerance

Now that the programming model for our application has been established, we will

examine some other fault tolerance solutions which have been produced. The types

of fault tolerance available to applications can be overwhelmingly numerous. From

system-level to user-level, automatic to user-involved, making the correct decision

about which type of fault tolerance to use in an application is important not only

from a performance perspective, but also to enhance programming productivity by

choosing a fault tolerance solution that is understandable and most appropriate to

the environment in which it is being used. Here we describe each of these types of

fault tolerance to give context to how the work presented in this dissertation can be

categorized.

11

2.3.1 System-Level vs. User-Level Fault Tolerance

Fault tolerance comes in two broad categories: system-level and user-level. System-

level fault tolerance includes checkpoint/restart systems that capture the entire

range of application memory automatically. They can be executed automatically

by some entity other than the user application and are designed to be the simplest

to use, though often with a higher cost. Because they capture all of the data

used by the application, whether important or not, they can be inefficient when

storing and retrieving large amounts of unnecessary data. Examples of system-level

fault tolerance include early checkpoint/restart libraries which did not include user

selectable checkpointing.

Alternatively, user-level fault tolerance trades simplified, automated fault toler-

ance for a more efficient, but less automated style. The application determines which

parts of its data are most important and protects only those parts, allowing the

remainder of the data to be reconstructed using other methods. The application

can also control features such as the time and frequency within the execution where

checkpoints would be least costly and most effective. Because of this selectiveness,

user-level fault tolerance tends to perform better than system-level, but can be more

challenging to use.

2.3.2 Checkpoint/Restart

The most prevalent form of automatic fault tolerance is checkpoint/restart. It is the

simplest form of fault tolerance to explain and understand as it so closely resembles an

action which all computer users employ constantly, saving the state of an application

to disk. While different implementations provide this functionality in different ways,

the overarching functionality of checkpoint/restart is to save some subset of the state

of an application to a location which will be available at a later time, and retrieved

and restarted to continue the application.

12

Global State

All checkpoint/restart libraries rely on the theory of the work done in Chandy and

Lamport’s global state research [24]. In this work, they define a method of capturing

a global state of a running computation by monitoring the status of communication

channels between nodes. They describe the idea of the work using an photography

analogy:

The state-detection algorithm plays the role of a group of photogra-

phers observing a panoramic, dynamic scene, such as a sky filled with

migrating birds - a scene so vast that it cannot be captured by a single

photograph. The photographers must take several snapshots and piece

the snapshots together to form a picture of the overall scene. The

snapshots cannot all be taken at precisely the same instant because of

synchronization problems. Furthermore, the photographers should not

disturb the process that is being photographed; for instance, they cannot

get all the birds in the heavens to remain motionless while the photographs

are taken. Yet, the composite picture should be meaningful.

From this work, we discover two methods of performing checkpoints. The first,

simpler method is to stop the computation and record the global state of the algorithm

on all nodes at once. This method is simple to understand, but incurs a high overhead

as all computation must stop and the checkpoint operation must be completed before

the algorithm may continue. This is analogous to the “stop the heavens” solution

described above. The second method is more complex, but does not require the

running algorithm to be disturbed. Instead the local state of a process is stored and

the messages sent between processes are cached using an algorithm similar to that

proposed by Chandy and Lamport.

13

libckpt

One of the first available checkpointing libraries was libchkpt [48], a hybrid of

system and user-level checkpointing. Like BLCR, though developed before it, libckpt

could provide automatic checkpointing in a way that was virtually invisible to the

application (the library required modifying one line of code). However, where

libckpt differentiated itself from other checkpointing libraries was with an array

of other improvements. Incremental checkpointing improved the checkpoint write

times and storage requirements by saving only the difference between the current

checkpoint and the previous one. Forked checkpointing removed the sequential

nature of checkpointing, where the application execution was interrupted to create the

checkpoint and resumed upon completion, instead replacing it with a system where

a child process is created by the checkpointing library to perform the checkpoint.

libckpt also included a relatively new feature at the time to write checkpoints as

directed by the application itself. The goal was to minimize the size and frequency

of the checkpointing operation. The mechanisms introduced were memory exclusion,

where certain portions of memory for which protection was no longer required could be

excluded from the checkpoint, and synchronous checkpointing, where the application

could take a checkpoint at a specific time in the code where it would be most

advantageous. The pairing of these two operations could create a minimal checkpoint,

both in terms of time and size.

Libckp

Libckp [60], developed at AT&T Bell Labs, is another user-level checkpoint library

that differentiated itself from others by including a more robust file checkpointing

system and a design specifically tailored to fault tolerance. First, libckp could not

only recover access to files when a process is restored from a checkpoint, but also the

status of the files at checkpoint time could be restored to ensure that the environment

is consistent with the state in which the checkpoint was made. In addition, libckp

14

could also roll back running applications to a previous state. Other libraries were

designed to restart an application from a checkpoint or migrate processes to a new

location after a checkpoint was made. libckp could roll any remaining processes back

to a consistent state after a failure to reduce the overhead of recovery. This was an

important step to facilitating real fault tolerance inside the application.

Condor

Condor [45, 46] (now called HTCondor), is a suite of tools developed to reclaim

unused computation cycles on a network of workstations. As part of the suite,

a checkpoint/restart system was needed. The C/R capabilities would allow an

application to move from one workstation to another using process migration. As

users would start to use a workstation, the application would be checkpointed by

Condor and migrated to another unused workstation where the application would

continue. Condor, as with many other user-level implementations, does have some

limitations where data from some sources cannot be saved due to inaccessibility

outside the system kernel. Condor is still in development today and can be acquired

from its website.

BLCR

System-level checkpoint/restart systems, such as the Berkeley Lab Checkpoint/Restart

(BLCR) [33] library, provide the most complete form of C/R by integrating with the

system kernel to capture all available information about a process, from its process

and session IDs to the entire contents of its memory. It is able to store all of this

information in a way that can later be completely replicated to bring an application

to the exact point of execution where the checkpoint was captured. BLCR describes

the goals of such functionality to provide not only fault-tolerance, but also gang

scheduling, where short interactive jobs can be scheduled on hardware during working

hours and longer-running, non-interactive jobs can be rescheduled at night, when the

15

speed of job interaction is not as critical. Also, such system-level checkpointing

facilitates job migration between nodes when one node is underperforming or before

a failure occurs. The management system can automatically reload the application

on a new machine without the application modifying any code or needing to be aware

of the migration at all.

Asynchronous Checkpointing

Asynchronous checkpointing is similar to the more familiar and traditional syn-

chronous checkpointing when done in user-space. In both models, individual processes

are responsible for saving their own data to disk, however the difference comes in the

coordination of such checkpoints. For asynchronous checkpointing, all processes do

not write the checkpoint at the same time. Instead, they checkpoint their local

data at a time which makes sense and then log messages the are sent between the

checkpoints. When rollback is necessary, the checkpoint is reloaded and the messages

are replayed to bring the recovering processes back to the same point as the remaining

processes. Many implementations of asynchronous checkpointing exist [17, 50] and

will be detailed later.

2.3.3 Migration

Process migration is another automatic solution which takes advantage of rollback

recovery techniques in a different way. Classically, after a failure, the job is restarted

using largely the same physical machines, but substituting the failed machines for

some which are still running. In some instances these issues can be avoided if

sufficiently accurate failure predictors are available. In these scenarios, processes

can checkpoint automatically and move from a suspected node to a node where

the failure probability is lower. Much of the work in this field originated when

designing NoW clusters where machine availability was based on the idleness of the

workstations [60, 45, 33], however with newer failure predictors, this technique is now

16

being deployed on large-scale HPC machines to combat failures through libraries such

as Adaptive MPI.

2.3.4 Replication

Replication has recently been proposed as a solution to the increasing cost of

checkpointing, both synchronous and asynchronous [36]. The idea of replication is

that most applications do not use the entire machine size on the machines on which

they are run. To take advantage of the “wasted” space of the machine, multiple

copies of the application are run simultaneously. If a process failure occurs, one of

the replicant processes is wired into the original version of the application and the

computation can continue without the rollback requirement. This solution has been

demonstrated to have merit for some types of machines, especially those where the

system utilization is not greater than 50%. However, for typical HPC deployments,

where a machine is not utilized for capability jobs, but for capacity, where smaller

jobs fill out the time on the system and very few jobs take advantage of the entire

system size, this technique crowds out the other jobs by imposing an overhead of at

least 100% of the original job size (maybe more if more than one replicant is used).

Bosilca et al [16] performed a study to demonstrate the overhead of various fault

tolerant techniques which demonstrates the tradeoff points between rollback-recovery

and replication. In addition to demonstrating these overheads, this paper also points

to the need for new fault tolerance techniques for capability applications of the future.

2.3.5 Algorithm Based Fault Tolerance

All of the above automatic fault tolerant solutions have been productive on existing

systems where bottlenecks such as I/O bandwidth did not yet cause issues. Today,

new fault tolerance techniques are needed to lower the overhead of resilience and

ensure that HP applications will continue to be productive in the future.

17

Algorithmic Based Fault Tolerance (ABFT) began as a field of study to resolve

silent errors in linear algebra problems. Since that time, it has expanded to include

diskless checkpointing and more sophisticated techniques. This section will examine

this progression.

Silent Error Detection

While many times errors are thought of as problems which cause catastrophic machine

failure of some kind, this is not always the case. Some failures, such as a bit flip due

to radiation, do not create an easily detectible failure, rather they introduce a small

distortion in the contents of memory. These types of failures must be detected by the

algorithm itself to ensure that a correct answer has been reached. The need for this

sort of failure detection spawned ABFT [39]. Huang and Abraham introduced a new

method of evaluating the results of linear algebra computations to ensure accurate

results. From their work, a new field of study emerged.

Diskless Checkpointing

To support ABFT, a new set of tools was necessary. Though checkpoint/restart

had existed previously, it usually required that the entire application be stopped

and restarted by reloading a checkpoint from disk. This could be a very expensive

operation as the bandwidth to the stable storage could be a bottleneck, and often,

most of the processes were still functioning correctly and did not require a restart.

To solve this problem, Plank, Kim, and Dongarra [49] created a new form of

checkpointing called Diskless Checkpointing. Rather than writing the checkpoints

to stable storage to be expensively re-read when a failure occurred, often back to

the same location as the original copy, the checkpoints would be stored directly in

the memory of the remaining processes. Supported by their previous work [48],

this facilitated fast retrieval and no longer required all of the processes to restart,

regardless of which processor suffered the failure.

18

As MPI techniques for recovery became more sophisticated (see Section 2.4 for

more details), new algorithms were developed to take advantage of the new features

using diskless checkpointing. One of the first to do this was a Preconditioned

Conjugate Gradient solver [25]. This algorithm used weighted checksums and

additional MPI processes to calculate and store checksums which could be retrieved

after a process failure. FT-MPI provided the mechanism to replace failed processes

and allowed the application to continue communication. This technique expanded to

other applications, including the QR Factorization used as an example in this work.

2.3.6 Transactional Fault Tolerance

Transactional fault tolerance has been in existence for decades. It began as a way

of ensuring data consistency within distributed databases [13]. Each operation

submitted to the database was either applied completely and succesfully, or the

database was rolled back to a state before the operation was attempted. By

performing updates in this atomic fashion, the database was protected from

corruption in the case where the operation failed. Later, as concurrency became

more popular in computing, transactional memory was introduced [38] to assist the

programmer when attempting to ensure that multiple concurrently running processes

did not attempt to write to the same piece of memory at the same time. The ideas

of transactions are currently moving into HPC, including preliminary discussions of

transactional fault tolerance in the MPI Standard.

2.4 MPI Level Fault Tolerance

As research in fault tolerance matured and developers started to integrate it into their

codes, new efforts began to bring the ideas of fault tolerance into the most popular

distributed communication library, MPI. Though fault tolerance has never been an

official part of the MPI Standard, work toward achieving fault tolerance within MPI

19

has continued for many years. In this section, we will examine some of the efforts

made to extend MPI.

FT-MPI & HARNESS

FT-MPI [34] has been one of the most successful (in terms of number of users)

implementations of fault tolerance within the MPI stack, to date. FT-MPI provided

a number of options for users to recover from failures. All of the options provided

mostly automatic recovery within the MPI library itself, minimizing the impact of

fault tolerance on existing codes. To trigger the recovery, the user only needed to call

a new communicator creation function (such as MPI_COMM_DUP or MPI_COMM_CREATE)

and the MPI implementation would automatically construct the new communicator

in such a way that it would be functional for MPI communication.

The first recovery mode option is SHRINK. In this recovery mode, failed processes

are removed from any new communicator, and the communicator returned from the

creation function will compress the remaining processes to create a monotonically

increasing set of ranks. For some applications, this could cause problems due to

calculations that depend on a consistent value for the local rank.

The second recovery mode option is BLANK. This mode is similar to SHRINK in

that all failed processes are removed from the new communicators. However, rather

than compressing the remaining processes, the failure mode replaces them with an

invalid process. Any attempts to communicate with the invalid ranks will cause an

error. This failure mode provides the opportunity to replace invalid ranks with new

processes at a later, time but maintains the ranks of existing processes where such a

value is important for the computation.

The third and most well-supported recovery mode is REBUILD. This recovery

mode automatically creates new processes to replace any processes which have

failed. The goal of this recovery mode is to support applications where a consistent

number of processes with consistently numbered ranks can be guaranteed. New

processes are automatically restarted with the same command line parameters as

20

the original processes; however, they are not automatically reinserted into all of the

subcommunicators of the processes which they replace. Any communicators other

than MPI_COMM_WORLD must be reconstructed manually.

When FT-MPI was first written, it was actually built on top of PVM due to the

lack of an appropriate MPI runtime. Later, the HARNESS runtime [35], originally

implemented in Java, was rewritten in C and adopted as the foundation for FT-MPI.

This runtime provided key functionality such as the ability to create new processes,

monitor their health, and track the status of all processes from any node.

FT-MPI was a successful project in the sense that it started an important area of

research into fault tolerance included in the MPI specification, though it was never

adopted into the MPI Standard itself. Because of the lack of standardization, its

availability and financial support was eventually crippled and the project is no longer

maintained.

MPI with Checkpoint/Restart

Alongside the efforts described in Section 2.3.2 have been similar efforts to inte-

grate coordinated Checkpoint/Restart mechanisms into the MPI implementations

themselves. One of the first attempts to accomplish this involved BLCR and

LAM/MPI [53]. A team of researchers from Indiana University and Lawrence Berke-

ley National Laboratory integrated BLCR’s kernel-level process checkpointing with

the LAM/MPI implementation using coordinated checkpointing to automatically

preserve an application after failure. These checkpoints can either be triggered

transparently by the MPI implementation or manually by the user. Upon failure,

the user can restart the application from a saved process context using the BLCR

utility cr_restart.

In addition to the work to integrate checkpoint/restart functionality into the MPI

library itself, there has been work to improve the performance of such checkpointing

operations, both when writing checkpoints and later reading them back. In [59],

the authors claim the the primary overhead of checkpoint/restart implementations

21

is the bottleneck of accessing the data storage device with many nodes at once. To

resolve this issue, they proposed an algorithm using LAM/MPI which would instead

distribute the checkpoints to a number of nodes. This would improve the performance

because the data was no longer being sent to the same point, but distributed among

the entire system. In addition, the resiliency was improved because multiple copies

of the data ensured that even if one node experienced a fault, the other nodes would

still be available to provide the data on recovery.

Later, LAM/MPI was merged with many other MPI implementations to form

Open MPI and the work on checkpoint/restart systems was revived in this new

context [42]. In addition to supporting BLCR, the new work focused on providing a

framework to allow other forms of checkpoint/restart to function as well, including

asynchronous checkpoints. The new system had five primary tasks on which it

focused: a snapshot coordinator to initialize, monitor, and aggregate checkpoint

data, a file management tools to ensure that snapshot data is available on the correct

nodes at the correct time, a distributed checkpoint/restart protocol to coordinate

the checkpointing itself, implemented at the MPI layer to provide the most support

for the intended system, a local checkpoint/restart system to actually perform the

checkpointing operation on the nodes, and a notification mechanism for the MPI

library itself to preserve its own state for the checkpointing operation. This system

was successful in its implementation, integrating tightly with all components of the

Open MPI implementation.

MPICH-V

MPICH-V [15] was designed to be an MPI implementation providing automatic,

transparent fault tolerance via asynchronous checkpointing and message logging.

It accomplished this by starting with a well-known implementation, MPICH, and

adding the needed mechanisms. Checkpoints were performed locally using the Condor

Stand-alone Checkpointing Library (CSCL), using the forked checkpointing method

described earlier, and sent to a checkpoint server where they are stored until needed

22

upon a node failure. Similarly, to achieve a total ordering of messages and maintain a

complete record, messages are routed through Channel Memory (CM) nodes. These

nodes maintain a record of the messages and provide them to restarted processes when

necessary. In addition to its fault tolerance features, MPICH-V was also designed to

create grids of workstations, including handling local firewalls when routing messages.

MPI/FT

Another MPI implementation, MPI/FT [12], tried to create a hybrid of available

fault tolerance solutions to support different styles of applications. It targeted two

specific models. The first model was a master-worker style application where a

single master process communicates directly with worker processes but does not use

collective operations. For this type of application, the MPI library would notify only

the master process of failures and automatically relaunch failed workers and repair the

communication channels of MPI_COMM_WORLD on the master process. Checkpointing

was unnecessary for this type of application as the worker processes did not have

critical data which could be easily recalculated. The second model of application was

the more traditional, Single Program Multiple Data (SPMD) application, where any

process may communicate with any other process. For this type of application, the

MPI library expected the application to perform synchronous loops on all processes

where communication was clustered at the beginning and end of each loop. This

model did include checkpointing which was coordinated by the process at rank 0.

When a failure occurred, the failed process was replaced from the checkpoint and

MPI_COMM_WORLD was also repaired to include the replaced process on all ranks.

Recovery was not handled automatically, but done via new API calls to coordinate

recovery, query the system about process status, and other interfaces. While MPI/FT

provided an interesting solution for specific models of applications, it was not a

complete solution for applications which required more exotic executions.

23

Egida

Egida [50] is a toolkit, integrated with MPICH, designed to provide fault tolerance

for non mission-critical applications that run on NoW clusters rather than large scale

machines. It provides transparent recovery through log-based rollback recovery. To

perform all the tasks necessary to accomplish this, it uses a series of modular building

block kernels to support a monolithic event handler. As events are ordered from the

software API, failure detector, network monitor, or timers, the event handler executes

a grammar to determine the appropriate course of action, and activates the necessary

kernel to perform the action.

Starfish

Starfish [10] is another fault tolerance solution targeting NoW clusters. The main

contribution to differentiate Starfish from other solutions is that it was one of the

first such implementations to support MPI-2 dynamic processes. It is constructed by

deploying Starfish daemons on each machine which function to deploy and manage

application processes, including MPI processes. The daemons are also responsible

for the deployment of the fault tolerance solution. Starfish is designed to use

checkpointing (either synchronous or asynchronous) and can interchangeably deploy

new checkpoint/restart systems as they are implemented. Without modification, MPI

applications integrating with Starfish can only use transparent, system checkpoints.

To use additional functionality, such as user-initiated checkpointing and dynamic

process reconfiguration, the application must be modified to use Starfish specific up-

calls and down-calls.

DejaVu

DejaVu [52] is a transparent checkpoint/restart system incorporated with MPI. It

provides low-overhead checkpointing and message logging to ensure resilience across

any number of failures. By bringing the checkpointing into the library, it can provide

24

the portability not available from traditional system or user- level checkpointing

solutions. Also, by including message logging, DejaVu can support process migration

in the event that a process cannot be relaunched on its original node.

Proactive Fault Tolerance

Not all fault tolerance techniques require that the failure has already occurred before

reacting. In [23], the authors demonstrate a scheme where the MPI implementation

can take advantage of highly accurate failure predictors, using existing hardware

monitors such as temperature sensors, to predict when a failure might occur and

preemptively move the running task to another node. This work uses Charm++ and

Adaptive MPI as a basis for its work to take advantage of its built-in task migration

capabilities. When the failure prediction techniques cannot predict a failure, the

implementation relies on traditional checkpointing techniques to recover from failures.

2.4.1 Open MPI

In this dissertation, we base our work on the Open MPI implementation of the

MPI Standard. Open MPI [8, 37] has been designed to be a collaboration between

industry, academic, and research partners to design an MPI implementation which

facilitates both high performance communications, but also research involving future

technologies which could be involved with MPI. Open MPI has a modular design

which is intended to facilitate easy replacement of specific parts of the implementation

in order to develop new modules. This has lead to a large number of systems which

are supported by the implementation and thus, a large user base. Recently, Open

MPI was used as the basis for the MPI implementation which led to the Japanese

K-Computer becoming the fastest machine in the world for the June 2011 Top500

list [3].

25

2.5 Conclusions

The thread that unites all of these fault tolerance solutions (other than FT-MPI) is

that none is designed to allow MPI applications to continue communication after a

process failure. They allow recovery by redeploying the application after a failure

and restoring from a previous state. In this sense, they are not solutions to fix

MPI itself, but to fix the applications running on it. In the remaining chapters,

we will demonstrate a solution using both existing MPI implementations to repair

applications after a failure, and a new MPI proposal which provides continuous

communication across process failures.

26

Chapter 3

Design Goals

After evaluating the features, strengths and weaknesses of the previous research in

fault tolerance, four main goals for a successful fault tolerant communication library

emerge. While not all libraries will fulfill all of these goals, for an MPI library to

be successful at supporting a wide variety of fault tolerant paradigms, these are

foundational principles which should be considered during the design.

3.1 Flexibility

A successful fault tolerant library must provide the flexibility to support multiple

consistency and recovery techniques. For example, a Monte-Carlo master-worker

application may not require complex recovery after a process failure is detected by

the master process. Rather, the failed worker process can safely be ignored. If an MPI

implementation attempts to perform some method of automatic recovery, it would not

only introduce a high recovery cost to an application which does not require it, but it

would also require the application to change its behavior in order to support the type

of fault tolerance mandated by the library. This is not the most flexible approach to

fault tolerance and therefore limits its usefulness as part of a communication standard.

Rather, the standard should provide the minimum level of recovery, only enough to

27

allow further communication, and then allow the application to choose what direction

subsequent recovery should take.

3.2 Resilience

Resilience refers not only to the ability of the MPI application to survive failures,

but also to recover into a consistent state from which the execution can be resumed.

This manifests most profoundly in the effort to ensure that an MPI operation cannot

stall indefinitely as a consequence of a failure. If an operation never returns, the

application can take no part in the recovery, and fault tolerance is impossible. All

operations which perform communication must return descriptive error codes to

inform the application of any unexpected behavior which occurred while the library

was executing. As long as some processes in the application are informed of a failure,

they can initiate recovery actions. In addition to being deadlock-free, the library

must also provide mechanisms to alert other processes to failure when necessary.

These mechanisms could be automatic within the library or manual via an external

construct.

3.3 Performance

The performance impact of any fault tolerance additions to an MPI communication

library must be minimal when outside of the recovery path. Internal recovery should

be triggered only when necessary and normal failure monitoring actions should

take place out of the performance critical path. As mentioned in Section 3.2, not

only should the failure-free operations introduce insignificant levels of overhead, but

recovery operations should also be fast. Many automatic fault tolerance techniques

exhibit poor performance as they require universal participation in recovery after a

failure. Rather than imposing such global knowledge on the system, a minimal, local

knowledge shows much more promise for high performance. When alerted to a failure,

28

if it is necessary to inform other processes, appropriate constructs should be called

by the application, not the library, to ensure that only necessary levels of recovery

are executed.

3.4 Productivity

The last goal is harder to measure empirically, but is nonetheless critical in the design

of a fault tolerant MPI library. An enormous number of legacy MPI codes already

exist which do not support fault tolerance and would not benefit from its support if it

were to be implemented. To that end, any new fault tolerance additions to the MPI

Standard must not require changes from such legacy applications. This means that

the behavior of existing MPI operations should not change without a severe need.

In addition, the fault tolerance constructs should be minimal both in terms of

quantity and complexity. By providing the minimal set of changes to MPI, the chances

of the library being used increase and the time required to adopt the library decrease.

When designing a minimal set of changes to supply fault tolerance, some

convenience functions which might increase programmability will be left out. This

does not prohibit such functions from existing. Instead, these functions may be

provided as an external library built on the foundation of a minimal standard.

These external libraries are not limited only to convenience functions. They can

also introduce complex recovery mechanisms not found in a standardized document.

29

Chapter 4

Checkpoint-on-Failure

As a first attempt to meet the goals set out in Chapter 3, we evaluated the feasibility

of implementing fault tolerance in the context of the current MPI Standard (version

3.0 [58]), using only the mechanisms available as it is currently written. This chapter

details that effort and demonstrates an application that can function under such

constraints.

4.1 Existing Error Handling in MPI

The existing MPI Standard provides minimal support for fault tolerance. Section 2.8

states in the first paragraph:

MPI does not provide mechanisms for dealing with failures in the

communication system. [. . .] Whenever possible, such failures will be

reflected as errors in the relevant communication call. Similarly, MPI

itself provides no mechanisms for handling processor failures.

Failures, be they due to a broken link or a dead process, are considered resource

errors. Later, in the same section:

This document does not specify the state of a computation after an

erroneous MPI call has occurred. The desired behavior is that a relevant

30

error code be returned, and the effect of the error be localized to the

greatest possible extent.

So, in the existing standard, process failures are treated as errors, and therefore

the behavior of the MPI library is undefined. However, the standard does provide

guidance for implementations to be considered “high quality”. The second excerpt

hints at such behavior by suggesting that the library attempt to localize the impact

of the error and inform the application of the failure. Unfortunately, most of

the implementations of the MPI Standard have implemented process failures as

unrecoverable errors, and the processes of the application are most often killed by

the runtime system when a failure is detected on any of them, leaving no opportunity

for the user to mitigate the impact of failures.

In addition to this limited definition of the behavior of the library after a process

failure, MPI also defines a construct called an MPI_ERRHANDLER. These are designed

to be triggered when a high quality implementation of MPI detects a failure of some

kind. The MPI_ERRHANDLER is attached to an MPI Communicator object and includes

a callback function which is executed by the library. MPI provides two built-in error

handlers, MPI_ERRORS_ARE_FATAL and MPI_ERRORS_RETURN. MPI_ERRORS_ARE_FATAL

is the default error handler, and when MPI detects a failure, it automatically aborts

the entire MPI application without the possibility of recovery or cleanup. MPI_-

ERRORS_RETURN provides more functionality by attempting to return control to the

application after a failure. MPI is no longer usable for communication, but the

application can perform actions to clean up the system before exiting. Custom error

handlers provide the most flexibility. Their callback function can perform last second

operations as the MPI library becomes unusable.

4.2 The Checkpoint-on-Failure Protocol

Based on the capabilities of the current version of the MPI Standard, we designed a

new approach for supporting ABFT applications, called Checkpoint-on-Failure (CoF).

31

?

ABFT
Recovery

1

2
3

4

5 6
7

1. MPI returns an error on surviving processes
2. Surviving processes checkpoint
3. Surviving processes exit
4. A new MPI application is started
5. Processes load from checkpoint (if any)
6. Processes enter ABFT dataset recovery
7. Application resumes

Table 4.1: The Checkpoint-on-Failure Protocol

Table 4.1 presents the steps involved in the CoF method. In the figure, horizontal

lines represent the execution of processes in two consecutive MPI applications. When

a failure eliminates a process, other processes in the application are notified and

regain control from ongoing MPI calls (1). Surviving processes should assume the

MPI library is dysfunctional and not continue to use MPI operations (in particular,

they do not yet undergo ABFT recovery). Instead, they checkpoint their current state

independently (2) and abort (3). If any processes were not initially alerted to the

failure, they will eventually be notified after the cascading calls to MPI_ABORT reach

one of their neighbors. When all processes have exited, the job is usually terminated,

but the user (or a managing script, batch scheduler, runtime support system, etc.)

can launch a new MPI application (4), which reloads processes from checkpoint (5). In

the new application, the MPI library is functional and communications are possible;

the ABFT recovery procedure is called to restore the data of the process(es) that

could not be restarted from checkpoint (6). When the global state has been repaired

by the ABFT procedure, the application is ready to resume normal execution (7). If

another failure hits the system during the recovery, the local states are not updated,

and the relaunch starts from the beginning. If another failure hits the system after

the ABFT recovery, the entire procedure is followed to handle it.

CoF is most directly comparable to the existing method of periodic checkpointing.

Compared to periodic checkpointing, in CoF, a process pays the cost of creating a

32

checkpoint only when a failure, or multiple simultaneous failures, have happened,

hence it creates an optimal number of checkpoints during the run (and no checkpoint

overhead on failure-free executions). Moreover, in periodic checkpointing, a process

is protected only when its checkpoint is stored on safe, remote storage, while in CoF,

local checkpoints are sufficient: the forward recovery algorithm reconstructs datasets

of processes which cannot restart from a checkpoint. Of course, CoF also exhibits the

same overhead as the standard ABFT approach: the application might need to do

extra computation, even in the absence of failures, to maintain internal redundancy

(whose degree varies with the maximum number of simultaneous failures) used to

recover data damaged by failures. However, ABFT techniques often demonstrate

excellent scalability; for example, the overhead on failure-free execution of the ABFT

QR operation (used as an example in Section 4.5) is inversely proportional to the

number of processes.

4.3 MPI Requirements to support CoF

To support CoF, some demands are made of the underlying MPI implementation.

Returning Control After Failures: Many MPI implementations not only choose

MPI_ERRORS_ARE_FATAL as the default MPI error handler, but also either do not

implement the ability to choose another error handler, or provide other error handling

mechanisms which supercede the MPI error handlers. For CoF to be functional, the

MPI implementation must provide a functional error handler mechanism, including

MPI_ERRORS_RETURN as well as custom error handlers defined by the application. In

addition, the MPI implementation must guarantee that after a failure, it returns

control to the application by invoking the error handler. It does not need to provide

a perfect failure detector Fischer:1985tt where all processes are immediately notified

of failures (indeed, that is often the wrong type of failure notification due to its

high overhead cost), but it must never deadlock because of a failure, preventing the

33

application from regaining control and performing recovery mechanisms, defined as

an eventually perfect failure detector.

Termination After Checkpointing: The application must be able to reliably

ensure that all other processes are notified of the failure after any process detects it.

This can be through a user-controllable mechanism, such as exiting without calling

MPI_FINALIZE or by invoking MPI_ABORT, but if the failure is not propagated, then

some processes will take a recovery execution path while others attempt to continue

normal execution and eventually reach a deadlock scenario.

4.4 Open MPI Implementation

Open MPI is an MPI 2.2 compliant implementation of the MPI standard. Architec-

turally, it is divided into two main levels: the runtime (ORTE) and the MPI library

(OMPI). As with many MPI implementations, the default behavior of the library is

to abort upon process failure. This policy was implemented deeply at the runtime

layer, preventing the OMPI layer from making any policy decisions on the status of

the library after a failure. To correct this, major changes needed to be implemented

in ORTE.

4.4.1 Resilient Runtime

The main contribution of the Open MPI runtime is to provide process management.

This includes creating new processes at the beginning of an MPI job, cleaning up

processes at the end of the job, and spawning new processes within the job if requested

by the application. To accomplish this task, ORTE includes an out-of-band (OOB)

communication mechanism which allows the ORTE layers to communicate amongst

each other without impacting the performance of the high performance network.

When a node failure occurs, not only is the application’s communication ability

impacted, but also the runtime. ORTE needs to be able to react and repair the

34

OOB communication topology to route around failures and allow itself to continue

process management. For some communication topologies, such as a star where all

processes are directly linked to the head node, this is a trivial operation and only

requires excluding any failed processes from the routing tables. For more elaborate

topologies, such as a binomial tree, the self-healing operations are more complex,

requiring each node to recompute the tree around it to repair any links. If a parent

process in the tree fails, the healing process needs to make a new link to the next

alive process traveling up the tree. If a child process fails, the same needs to happen

traveling downward. In this way, the tree will always remain connected among alive

processes. However, it is not guaranteed, and indeed unlikely, that the tree will

remain balanced. It was determined that this was not a critical requirement of the

OOB as it is not used as a high performance messaging layer in Open MPI, only as

a communication mechanism for process management.

4.4.2 Failure Notification

In addition to providing a self-healing OOB communication mechanism to facilitate

CoF, ORTE also needed to provide basic failure notification. To track the status of

failures, an incarnation number has been added to the ORTE process names. When a

failure is detected, the name of the failed process (including its incarnation number)

is broadcast over the OOB topology. The incarnation number provides a mechanism

to determine which process failures are already known and which are not, preventing

duplicate recoveries for the same process failure. It also prevents a transient process

failure from causing confusion among the processes in the OOB by ensuring that

all processes know with which incarnation of a particular process they should be

communicating. To propagate this knowledge, ORTE processes monitor the health

of their neighbors in the OOB topology. When a failure is detected, the processes

around the failed process perform the route healing described in 4.4.1 followed by

a reliable broadcast algorithm which informs all processes in the application of the

35

failure. This algorithm has a low probability of creating a bifurcation of the routing

topology. Indeed, in the provided OOB topologies, this algorithm will never produce

a bifurcation. On each node, when the ORTE layer is notified of process failure, it

forwards to the information the OMPI layer, which has been modified to invoke the

appropriate MPI error handler, as determined by the user.

4.5 Example: QR-Factorization using CoF

This section illustrates the usefulness of CoF by demonstrating its applicability to

a widely used class of algorithms: dense linear factorizations. The linear algebra

algorithm modification performed in this section was done by Peng Du building on

the CoF library we implemented. The QR factorization is a cornerstone in many

applications, including solving Ax = b when matrices are ill-conditioned, computing

eigenvalues, least square problems, or solving sparse systems through the GMRES

iterative method. For an M × N matrix A, the QR factorization produces Q

and R, such that A = QR and Q is an M × M orthogonal matrix and R is an

M × N upper triangular matrix. The most commonly used implementation of the

QR algorithm on a distributed memory machine comes from the ScaLAPACK linear

algebra library [31], based on the block QR algorithm. It uses a 2D block-cyclic

distribution for load balancing, and is rich in level 3 BLAS [28] operations, thereby

achieving high performance.

4.5.1 ABFT QR Factorization

In previous work [32], the QR factorization algorithm written for ScaLAPACK was

modified to include ABFT techniques, leveraging FT-MPI as the platform to maintain

MPI communication after a failure. To ensure that the data in both the left (Q) and

right (R) factors is protected from fail-stop errors during execution, a technique called

Reverse Neighboring Checksum Storage is used. For each group of (Q) processes, a

36

0 1 2 0 1 2 0 1

0

1

0

1

0

1

0

1

2 0 1 2 0 1

Figure 4.1: Pattern to store checksums to prevent data loss in the event of multiple
failures. Figure borrowed from [32]

.

checksum and a duplicate are calculated and stored at the end of the matrix as

shown in Figure 4.1. These checksums are automatically updated as the algorithm

is executed. The matrix-matrix multiplication which updates the right side of the

original matrix will also update the values of these checksums. Because of this

property, the more expensive checksum operation is absorbed by the already executing

DGEMM kernel.

When a process failure is detected, all remaining processes are alerted of the

location of the failure by FT-MPI, which creates a replacement process in the same

coordinates in the P×Q block-cyclic distribution as the failed process. To restore any

missing checksums, the value is simply copied from a duplicate. To restore the missing

data blocks within the right factor of the matrix, a reduction operation calculates the

value of the missing data by subtracting the remaining data values from the checksum.

The value of the left factor is also stored in a checksum at the bottom of the matrix.

37

Those values are either recovered from the checksum similarly to the right factor, or

the most recent panel is recomputed.

While this algorithm was successful using FT-MPI, as previously stated, FT-

MPI does not remain a viable candidate for MPI fault tolerance in the future. The

algorithm was ported to a more compliant version of MPI, Checkpoint-on-Failure, to

demonstrate its feasibility on existing systems.

4.5.2 Checkpoint-on-Failure QR

Checkpoint Procedure: Compared to a regular fault tolerance tool, CoF is not a

standard checkpointing procedure. Where system-level checkpoints save the contents

of large sections of memory, whether the data is still useful or not, CoF applications

should only checkpoint the most vital pieces of data that are either required for an

application to resume, or are prohibitively expensive to recalculate at recovery time.

This means that codes should refactor their existing checkpointing functions to save

less data and store it in a different location (depending on the type of application

and execution environment). For CoF-QR, the checkpointing function saves the local

values of the matrices and the loop indices necessary to restart. All other data critical

to the application can be regenerated quickly from these most important pieces.

State Restoration: ScaLAPACK programs have deep call stacks, including

functions from several software packages, such as PBLAS [26], BLACS [29, 30],

LAPACK [11] and BLAS [27]. In the previously existing FT-MPI version of the

QR algorithm, regardless of when the failure was detected, the current iteration of

the algorithm needed to be completed before processing the recovery procedure. This

would ensure an identical call stack on every process and that all processes had

updated their checksums completely. For the new CoF version of QR, failure must

interrupt the algorithm immediately, not completing the current iteration, because

the MPI library can no longer support the communication necessary to calculate the

most up to date checksums. While this has the potential to cause divergent call stacks

38

among the processes, because failure notification happens only in MPI and the lower

level procedures (BLAS, LAPACK, etc.) do not perform communication, the data

remains uncorrupted by failures.

To resolve the call stack issue, when restarted, every process undergoes a “dry

run” phase where the algorithm mimics the loop nests of the QR algorithm down

to the PBLAS level without actually applying modifications to or exchanging data.

When the algorithm reaches the original point of failure, the matrix content is loaded

from the checkpoint data and the algorithm is able to continue in the same manner

as before in the FT-MPI based code. The regular recovery procedure is applied: the

current iteration of the factorization is completed to update all checksums and the

dataset is rebuilt using the ABFT reduction.

4.6 CoF Performance

In this section, we use our Open MPI and ABFT modifications to evaluate the

performance of the CoF protocol. We use two test platforms. The first machine,

“Dancer,” is a 16-node, development cluster in the Innovative Computing Laboratory

at the University of Tennessee. All nodes are equipped with two 2.27GHz quad-core

E5520 CPUs, with a 20GB/s Infiniband interconnect. Solid State Drive disks are used

as the checkpoint storage media. The second system is the Kraken supercomputer, a

University of Tennessee owned machine, housed at Oak Ridge National Laboratory.

Kraken is a Cray XT5 machine, with 9,408 compute nodes. Each node has two

Istanbul 2.6 GHz six-core AMD Opteron processors, 16GB of memory, and are

connected through the SeaStar2+ interconnect. The scalable cluster file system

“Lustre” is used to store checkpoints.

39

4.6.1 MPI Library Overhead

One of the main concerns from application developers when discussing fault tolerance

is the amount of overhead introduced by the addition of fault tolerance into any

application code or intermediate libraries. Our implementation of fault detection

and notification is mostly implemented in the non-critical ORTE runtime. Typical

HPC systems feature a separated service network (usually Ethernet based) and a

performance interconnect; hence health monitoring traffic, which happens in the OOB

service network, is physically separated from the MPI communications, removing the

possibility of introducing network jitter due to fault tolerance messages. In addition,

changes to the MPI functions are minimal: the same condition that previously

triggered unconditional aborts has now been repurposed to trigger error handlers.

As expected, no impact on MPI bandwidth or latency was measured. The memory

usage of the MPI library is slightly increased, as the incarnation number doubles the

size of the process names. However, this is negligible in typical deployments.

4.6.2 Failure Detection

Critical to the functionality of CoF is the reliable and expedient detection of process

failures. The asynchronous failure notification described in Section 4.4.2, provides

this failure detection. We designed a micro-benchmark to measure failure detection

time as experienced by MPI processes. The benchmark code synchronizes with an

MPI_BARRIER, stores the reference time, injects a failure at a specific rank, and enters

a ring algorithm until the MPI error handler stores the detection time. The OOB

routing topology used by the ORTE runtime introduces a non-uniform distance to

the failed process, hence failure detection time experienced by a process may vary

with the position of the failed process in the OOB topology.

Figures 4.2(a) and 4.2(b) present the failure detection times of the linear and

binomial OOB topologies, respectively. The curves “Low, Middle, and High” show

the behavior for failures happening at different positions in the OOB topology with

40

 1

 1.5

 2

 2.5

 3

 3.5

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

D
e

te
c

ti
o

n
 T

im
e

 (
m

s
)

Rank

Failure injected at:
rank 1 (Low)
rank 8 (Middle)
rank 15 (High)

(a) Linear OOB Routing

 1

 1.5

 2

 2.5

 3

 3.5

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

D
e

te
c

ti
o

n
 T

im
e

 (
m

s
)

Rank

Failure injected at:
rank 1 (Low)
rank 8 (Middle)
rank 15 (High)

(b) Binomial OOB Routing

Figure 4.2: Failure detection time, sorted by process rank, depending on the OOB
overlay network used for failure propagation.

“Low” failures being injected at rank 1, “Middle” failures occurring at rank 8, and

“High” failures at rank 15. On the horizontal axis is the rank of the detecting process,

and on the vertical axis is the detection time experienced. The experiment uses 16

nodes, with one process per node, MPI over Infiniband, OOB over Ethernet, an

average of 20 runs, and the MPI barrier latency is four orders of magnitude lower

than the measured values.

In the linear topology (Figure 4.2(a)), every runtime process is connected to the

mpirun process. For a higher rank, failure detection time increases linearly because

it is notified by the mpirun process only after the notification has been sent to all

lower ranks. Obviously, this OOB topology is not designed to be a scalable solution.

The binomial tree topology (Figure 4.2(b)) exhibits a similar best failure detection

time. However, this more scalable topology has a low output degree and eliminates

most contentions on outgoing messages, resulting in a more stable, lower average

detection time, regardless of the failure position. Overall, failure detection time is on

the order of milliseconds, a much smaller figure than the typical checkpoint time.

41

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

20k 40k 60k 80k 100k

P
e
rf

o
rm

a
n

c
e
 (

T
fl

o
p

s
/s

)

Matrix Size (N)

ScaLAPACK
ABFT QR (w/o failure)

ABFT QR (w/1 CoF recovery)

Figure 4.3: ABFT QR and one CoF recovery on Kraken (Lustre).

4.6.3 Checkpoint-on-Failure QR Performance

Supercomputer Performance: Figure 4.3 presents the performance on the

Kraken supercomputer. The process grid is 24 × 24 and the block size is 100.

The ABFT QR (w/o failure) curve presents the performance of the ABFT QR

implementation, using CoF techniques, in a fault-free execution; it is noteworthy that

when there are no failures, the performance is exactly identical to the performance of

the unmodified ABFT QR implementation with FT-MPI. The ABFT QR (w/1 CoF

recover) curve presents the performance when a failure is injected after the first step

of the PDLARFB kernel. The performance of the non-fault tolerant ScaLAPACK

QR is also presented for reference.

Without failures, the performance overhead compared to the regular ScaLAPACK

is caused by the extra computation to maintain the checksums inherent to the ABFT

algorithm [32]; this extra computation is unchanged between ABFT-QR without

failures and ABFT-QR with a failure. Only on runs when a failure happened do

42

 0

 100

 200

 300

 400

 500

 600

 700

 800

10k 20k 30k 40k 50k

P
e
rf

o
rm

a
n

c
e
 (

G
fl

o
p

s
/s

)

Matrix Size (N)

ScaLAPACK QR
ABFT-QR (w/o failure)

ABFT-QR (w/1 CoF recovery)

Figure 4.4: ABFT QR and one CoF recovery on Dancer (local SSD).

the CoF protocols undergo the supplementary overhead of storing and reloading

checkpoints. However, the performance of the CoF-QR remains very close to the

no-failure case. For instance, at matrix size N=100,000, CoF-QR still achieves 2.86

Tflop/s after recovering from a failure, which is 90% of the performance of the non-

fault tolerant ScaLAPACK QR. This demonstrates that the CoF protocol enables

efficient, practical recovery schemes on supercomputers.

Impact of Local Checkpoint Storage: Figure 4.4 presents the performance of

the CoF-QR implementation on the Dancer cluster with an 8 × 16 process grid.

Although a smaller test platform, the Dancer cluster features local storage on nodes

and a variety of performance analysis tools unavailable on Kraken. As expected, the

ABFT method has a higher relative cost on this smaller machine, but compared to the

Kraken platform, the relative cost of CoF failure recovery is smaller on Dancer. Like

all algorithms involving checkpointing, the CoF protocol incurs disk access overheads

to store and load checkpoints when a failure hits, hence the recovery overhead depends

43

 0

 1

 2

 3

 4

 5

 6

 7

20k 25k 30k 35k 40k 45k 50k

A
p

p
li
c
a
ti

o
n

 T
im

e
 S

h
a
re

 (
%

)

Matrix Size (N)

Load Checkpoint
Dump Checkpoint

ABFT Recovery

Figure 4.5: Time breakdown of one CoF recovery on Dancer (local SSD).

on I/O performance. By breaking down the relative cost of each recovery step in CoF,

Figure 4.5 shows that checkpoint saving and loading only take a small percentage of

the total run-time, thanks to the availability of solid state disks on every node. Since

checkpoint reloading immediately follows checkpointing, the OS cache satisfies most

disk access, resulting in high I/O performance. For matrices larger than N=44,000,

the memory usage on each node is high and decreases the available space for disk

cache, explaining the decline in I/O performance and the higher cost of checkpoint

management. Overall, the presence of fast local storage can be leveraged by the

CoF protocol to speedup recovery (unlike periodic checkpointing, which depends on

remote storage by construction). Nonetheless, as demonstrated by the efficiency on

44

Kraken, while this is a valuable optimization, it is not a mandatory requirement for

satisfactory performance.

4.7 Evaluation of CoF

Clearly, CoF does not meet all of the goals from Chapter 3. It provides relatively

little flexibility due to the fact that it can only write a checkpoint after discovering

a failure. It does not provide a platform to build other fault tolerance solutions. It

provides sufficient resilience as it does allow the application to repair its execution

by reloading the data it writes after a failure. This allows the application to continue

executing even after a failure. Its greatest strength lies in its productivity. CoF is

supported by existing MPI libraries and uses the familiar checkpointing paradigm as

its basis. To that end, it is easily adopted by current applications as a possible solution

for fault tolerance. A number of linear algebra algorithms can quickly adopt the tools

in CoF with relatively little modification: one-sided factorizations, iterative conjugate

gradient methods, and two-sided factorizations. The only changes necessary are to

minimize the checkpoint size and to write a function to algorithmically repair the

missing data.

45

Chapter 5

User Level Failure Mitigation

After creating CoF (see Chapter 4), it became clear that designing a fault tolerance

framework within the existing MPI Standard to meet the goals in Chapter 3 would

not be feasible. At that point, we investigated new ideas for fault tolerance that

would require amendments to the MPI Standard, and we created a proposal for a

new chapter called User Level Failure Mitigation. The complete document submitted

to the MPI Forum is provided in Appendix A.

5.1 ULFM Design

Keeping with our design goals, we constructed a minimal set of new MPI constructs

which would provide the necessary changes to the MPI Standard to allow applications

to utilize fault tolerance in a way that makes sense to each one individually, rather

than defining a uniform recovery mechanism. To provide additional capabilities and

conveniences, we encourage the creation of libraries (see Chapter 6).

5.1.1 Failure Reporting

Failure reporting is essential for fault tolerance. Applications must be informed of

failures from the MPI library in a consistent and predictable way in order to construct

46

recovery mechanisms. The alternative would cause the application to be aware

of some failures and oblivious to others, leading to a deadlock between processes.

To that end, we decided to report failures using the return codes from existing

MPI operations. This has the double benefit of being easy to understand from an

application perspective and compliant with existing MPI constructs. Applications

need only ensure that they check return codes for all MPI operations and act

appropriately, an action which, ideally, they should already be taking, but in practice

is not the current standard procedure.

The fundamental error code that applications will receive to be alerted to a process

failure is MPI_ERR_PROC_FAILED. Another error code will be introduced later. When

an application receives an error code related to a process failure, it indicates that

the operation could not be completed successfully because an error occurred on one

of the processes involved in the operation. This definition was specifically crafted to

convey two ideas: 1) if an error causes a failure which prevents an MPI operation

from completing for a process, that process must return an error code to report

the failure; 2) if the operation can complete despite the failure for any reason (the

communication involved in the operation is already finished, the implementation was

able to circumvent the impact of the failures, etc.), it should do so and return no

error code related to the process failure. Thus, knowledge of process failures is not

global, but is local to any process which receives an error code indicating it.

Using local rather than global failure notification has substantial positive per-

formance implications. Considering the alternative: if an error causes a failure,

all MPI processes must report the same return code to the application to ensure

global knowledge of the system. This forces each MPI operation to conclude with

an agreement operation to determine the success or failure of the operation on all

other processes. The current best known agreement algorithm has a runtime of

O(nlog(n)) [41], which is a large amount of overhead to add to all MPI operations,

some of which currently exhibit a runtime of O(log(n)). By only enforcing global

47

0

1

2

3

Recv(1) RecoveryFailed

Recv(3)

Send(2)Recv(0)

?

?

Figure 5.1: Application discovers failure and encounters deadlock

knowledge when the user requires it, we bypass this increased overhead and keep the

per-operation cost low.

Though it is now established that global knowledge of failure is expensive and

therefore should not be imposed on all applications, there are times where such

knowledge is necessary. The most obvious example of such a time is during recovery.

Figure 5.1 demonstrates an example of a recovery situation where local knowledge is

not sufficient to prevent deadlock. In this example, four processes are communicating

sporadically when process 1 fails. Process 0 immediately discovers the failure because

it is actively communicating with process 1 at the time. Process 0 branches from the

normal execution and begins recovery operations. In the meantime, processes 2 and

3 are dependent on communications from process 0 in order to continue their own

execution. They enter blocking operations where they become deadlocked. Because

global knowledge of failures did not exist, the processes did not know to enter recovery

operations or to cancel their outstanding communication operations and transition

to recovery.

48

To resolve this situation, we introduce the new MPI construct: MPI_COMM_REVOKE.

This operation is a non-local, non-collective operation to propagate failure information

throughout an MPI Communicator. It does this by using an out-of-band, resilient

broadcast algorithm to interrupt all other non-local MPI operations and return the

new error code MPI_ERR_REVOKED. In this sense, it works similarly to the existing MPI

function, MPI_ABORT, without the subsequent ending of the MPI application. Both

MPI_ERR_REVOKED and the previously introduced error code, MPI_ERR_PROC_FAILED,

are permanent errors in the sense that once one of these codes are returned, the MPI

Communicator will never be usable again for interprocess communication, though it is

possible to transition from the error code MPI_ERR_PROC_FAILED to MPI_ERR_REVOKED

after the function MPI_COMM_REVOKE is called.

It is important to understand that MPI_COMM_REVOKE has no matching call on

remote processes. Once a process calls it on a particular MPI Communicator, all other

processes in the communicator will eventually receive the notification of revocation

through the error codes of other MPI operations as if the function was called on

their local processes. If another MPI process never makes another call to an MPI

operation, it will never be notified of the revocation of the communicator. If it is

necessary for all processes to be aware of process failures in this scenario, we provide

a tool in Section 5.1.5 to build such stronger consistency.

By reexamining the scenario introduced earlier, now in Figure 5.2, we can see

how this function might be used. After the failure of process 1, process 0 invokes

MPI_COMM_REVOKE. While processes 2 and 3 have already entered their respective

communication operations, the notification that their communicator has been revoked

causes those MPI_RECV operations to return with the error code MPI_ERR_REVOKED.

At this point, all processes can perform recovery together and the deadlock scenario

in Figure 5.4 is averted.

Though MPI_COMM_REVOKE can appear to be a useful catchall tool to introduce

global knowledge of failures to all applications, a better understanding of the tool

emphasizes that it should be used carefully and only in scenarios where it is required.

49

0

1

2

3

Recv(1) RevokeFailed

Recv(3)

Send(2)Recv(0)

Revoked
RevokedRevoked

Figure 5.2: Application discovers failure and recovers using MPI_COMM_REVOKE

Not all applications require global knowledge of failures, and introducing it manually

can impose a large synchronization and recovery overhead that would be otherwise

unnecessary. An example of such a scenario is a Monte Carlo, master-worker style

application. The usual communication pattern of such applications is that all worker

processes communicate with a master process but not with each other. Thus, there

are many point-to-point communications, but no collective communications. These

applications should not use MPI_COMM_REVOKE to alert the worker processes to failure,

but should simply continue their point-to-point communications unchanged. This

example shows the flexibility of ULFM by not imposing an automatic recovery

mechanism. In some cases, no recovery is the best course of action.

5.1.2 Rebuilding Communicators

When collective communication is required, using an existing MPI communicator

with failed processes is no longer an option. In this case, a new MPI construct to

50

restore the ability to communicate is necessary. To facilitate this, we created the

new function, MPI_COMM_SHRINK. This function is similar to the automatic repair

method of the same name used by FT-MPI [34]. After an MPI communicator has

been revoked, the remaining alive processes must call this function collectively. The

shrink operation will create a new MPI communicator by executing an agreement

algorithm among all alive processes to determine the group of processes which are

believed to have failed. This failed group is excluded and a new MPI communicator

is created with the remaining processes. The new communicator does not replace

the revoked communicator, but is provided as a new MPI communicator with a new

handle. This facilitates easier recovery by allowing the application to reference the

previous “version” of the communicator to acquire information such as previous size,

rank, and various other communicator properties.

Of all of the new MPI constructs, MPI_COMM_SHRINK was the most difficult to

design. Many options for communicator repair and recovery were considered before

deciding on shrink, some inspired by the recovery modes in FT-MPI. We will mention

some of the alternatives here to demonstrate the rationale behind the design decisions.

Blank

The most seriously considered alternative to MPI_COMM_SHRINK was an operation to

replace failed processes with MPI_PROC_NULL, introducing blank positions within the

MPI communicator. The advantage of this scenario is that all processes retain

their existing ranks and topologies, making continuing execution after failure an

easy transition as applications can continue to communicate in the same patterns

as before the process failure. However, as with many of the communicator repair

options, this mechanism does not provide the flexibility seen in shrink. For example,

by removing processes from the communicator, they can no longer be queried to

determine information about the communicator, such as the ranks of the failed

processes. This would also introduce a complexity when trying to replace the failed

processes. These complexities will be further examined below.

51

Replace

Replace was the default recovery mechanism in FT-MPI. Failed processes were

automatically replaced with a new process in the same rank and location in the

MPI communicator. For applications, this is the simplest form of recovery to

understand because it automatically reconstructs MPI_COMM_WORLD and re-spawns

failed processes. No manual recovery is required. However, from an implementation

perspective, implementing this automatic recovery mechanism is very expensive and

introduces many difficult problems related to communicator reconstruction. FT-MPI

solved the problem of communicator reconstruction by destroying all communicators

other than MPI_COMM_WORLD and requiring the application to reconstruct the commu-

nicators manually. This is a heavy-handed approach and is improved by using shrink.

Also, as with the blank functionality, using the replace mechanism does not facilitate

as many other forms of fault tolerance, but requires that applications conform to the

decisions mandated by replace.

Using existing MPI functions

The last consideration was to modify the existing MPI functions to include fault-

tolerant semantics. An example of a function where this would make sense

is MPI_COMM_DUP. Semantically, the newly defined function would be similar to

MPI_COMM_SHRINK, however redefining existing MPI constructs introduces both

confusion and incompatibility. Existing MPI codes would be forced to be rewritten

to either specifically handle process failures as defined by the new text or specifically

exclude them, rather than the behavior we chose where applications are clearly either

using fault-tolerant constructs, or are not, depending on whether or not they call

the new recovery functions. Without very careful design, using existing functions as

fault-tolerant mechanisms could cause confusion if failures occur in an inconvenient

place. If a failure occurs just before MPI_COMM_DUP and the operation creates the

new communicator without the failed process, an application which does not expect

52

A CBX X

Figure 5.3: Intermediate node failures report as MPI_ERR_PROC_FAILED

the recovery would need to perform extra checks to see if the communicator has the

expected size and composition. The same can be said for other MPI functions, such

as the new function MPI_COMM_CREATE_GROUP, introduced by MPI-3.

5.1.3 Failure Discovery

Once a failure has been reported to the MPI processes and the processes have taken

steps to disseminate knowledge as necessary, another issue must be addressed. The

living processes will need to have a mechanism to discover which group of processes

have actually failed and should be excluded from the continuing application. While

it might seem obvious that the failed process would be the one with which the failed

communication was taking place, this is not guaranteed to be the case. As an example

(see Figure 5.3), if process A is communicating with process C and the communication

topology routes messages through the node containing process B, a failure of process

B could result in an inability to communicate between processes A and C. While

a good MPI implementation should make every effort to solve such routing issues

transparently, it is possible that a scenario would occur where such bifurcation is

unavoidable or the implementation chooses not to repair the communication paths.

In this case, a point to point communication operation between A and C would return

53

the error code MPI_ERR_PROC_FAILED, even though neither A nor C has actually

failed. To discover the actual source of the failure, a new set of functions is necessary.

The functions provided for this purpose are MPI_COMM_FAILURE_ACK and MPI_-

COMM_FAILURE_GET_ACKED. By calling this set of functions, the application can

acquire the MPI Group containing the set of processes which are known to have

failed. MPI_COMM_FAILURE_ACK sets a reference point within the MPI implementation

to which MPI_COMM_FAILURE_GET_ACKED refers back when determining the group of

failed processes. This group represents only local knowledge and is not guaranteed to

be uniform among all process. No matter how many times the MPI_COMM_FAILURE_-

GET_ACKED is called, the group of failed processes will not change until the reference

point is changed by calling MPI_COMM_FAILURE_ACK. By splitting the functions in two

this way, the application can maintain thread safety by controlling failure knowledge

between the threads.

5.1.4 Wildcard MPI Receive Operations

The other benefit of splitting the operation of acquiring the group of failed processes

into two functions is that the MPI_COMM_FAILURE_ACK function has another purpose.

MPI contains a constant, MPI_ANY_SOURCE, which can be used to specify that a receive

operation should match a message coming from any other rank within a communicator

rather than the usual format where a specific source is provided. When considering

failure scenarios and knowledge of the status of the ranks, this presents a difficult

situation for the application. If a failure needs to be reported during such a wildcard

receive operation, MPI_ERR_PROC_FAILED is not an accurate representation of the

status of the operation. While a process involved in the operation will have failed, it

might not be the one with which the wildcard receive would have matched. In this

case, it is still important that we alert the application to a possible failure, but we

should also provide a way for the application to continue to use the wildcard receive

constant after the failure notification so as to not require an expensive, complete

54

0

1

2

3

Recv(1) Failed Spawn

?

?
Finalize

Figure 5.4: Application reaches inconsistent state after some processes exit before
other processes

recovery. In this situation, we return the error code MPI_ERR_PENDING to inform

the application that the receive operation is still pending and can be completed

after the application acknowledges the failure using MPI_COMM_FAILURE_ACK. Once

the application acknowledges the failure, the MPI library will not return another

error code related to that specific process failure and the application can re-enter the

wildcard receive operation. It should be noted that MPI_ERR_PENDING is not a new

error code, but the existing definition, “pending request”, applies to this scenario and

so defining a new error code was decided to be unnecessary.

5.1.5 Process Consistency

While a large focus of the ULFM work has been to provide a system with weak

consistency between processes to improve performance, there are times where stronger

consistency is necessary. Figure 5.4 demonstrates a situation where this could occur.

Processes 2 and 3 believe the application is completed and call MPI_FINALIZE while

55

process 1 fails, to be discovered by process 0. When process 0 spawns a replacement

for process 1 and the two processes try to perform recovery operations, the data

needed from processes 2 and 3 is no longer available. In this situation, an agreement

algorithm among the processes is necessary before algorithm completion to ensure

that all processes successfully reach MPI_FINALIZE. While in this scenario, using an

existing MPI function such as an MPI_ALLREDUCE could solve the problem, if the

application does not need to recover process 1, the collective operation would no

longer complete successfully without repairing the communicator, an expensive and

possibly unnecessary operation.

To provide a tool to resolve this scenario, we created MPI_COMM_AGREE. This

function performs a fault tolerant agreement algorithm over a boolean value among

all alive processes. All alive processes participate with the value passed in as an

argument and all dead processes do not participate (which is semantically equivalent

to participating with the value TRUE). This allows applications which communicate

only via point to point operations to complete the agreement algorithm despite

process failures. The rationale behind ignoring process failures (including new process

failures) is that if the failure had impacted an MPI communication, that operation

would have returned an error code reporting the failure. If none of the processes

detected that failure, then it did not impact the results and can therefore be safely

ignored. If an error code was previously reported due to process failure, the process

which received it can participate with the value FALSE and all other processes will

know that they need to enter recovery operations.

The only error code related to process failure that MPI_COMM_AGREE may return

is MPI_ERR_REVOKED. If the communicator has been revoked remotely (or indeed

locally), it is most likely that the revoke operation was intended to interrupt even the

finalization operation and that recovery is necessary.

56

5.2 Beyond Communicators

While communicator operations are the most common use of MPI and historically

the core of MPI, there are other chapters of the MPI Standard that cover other

communication contexts. Dynamic processes, shared memory windows and collective

file I/O operations have been included in the Standard to provide increased

functionality in the form of one-sided communication operations and large scale file

manipulation. The work to provide added fault tolerance capabilities to these types

of operations will continue as this work was removed from the original proposal to

the MPI Forum, but the fundamentals detailed here are similar to the fault tolerance

designed for MPI Communicators.

5.2.1 Failure Notification

Well-defined failure notification is key to managing failures. By defining the expected

behavior of the MPI library after a failure, the application can design resilience

protocols to ensure a deadlock-free execution.

Dynamic Processing

Dynamic processing requires that the MPI implementation construct new communi-

cators, called intercommunicators, to connect the group of existing processes to the

group of new processes. The most critical requirement is that if a process failure

is detected while the MPI library is constructing the new MPI intercommunicator,

the MPI library must always notify the root processes on either side of the

intercommunicator. This is key because collective and point-to-point communication

from the local group of an intercommunicator to a remote group is expensive at

best and impossible at worst after a failure has impacted the capabilities of the

communicator. By ensuring the root processes have been notified, they can provide

notification to all processes in their local groups by revoking their communicator.

Also, for similar reasons, when creating new processes by calling MPI_COMM_SPAWN, if

57

a process failure is detected during the process or communicator creation, the MPI

library should not return a partially constructed MPI communicator which cannot be

repaired. Instead, the library should return a communicator that does not function

(such as MPI_COMM_NULL) which will signify to the new MPI processes that they

should probably abort, and to the old processes that they should attempt to spawn

new processes again.

One-Sided Communication

One-sided communication operations behave as non-blocking communication oper-

ations. Because of this, they have similar failure notification definitions to calls

involving MPI communicators such as MPI_ISEND and MPI_IRECV. Rather than

notifying applications of process failure during the initialization calls, the library

should delay notification to the one-sided completion calls (i.e. MPI_WIN_COMPLETE,

MPI_WIN_WAIT, etc.). Remote memory access calls also have different failure semantics

than traditional MPI communicator-based operations, though the motivation is

similar. Whenever a failure is reported during one-sided epochs, the memory targeted

during that period is undefined. This definition is similar to the fact that any buffers

used during MPI operations where a failure is reported are also undefined. More

specifics of the failure notification definitions for remote memory operations can be

found in the specification document in Appendix A.

File I/O

File I/O operations are more complex when considering failure notification. Unlike

communicator-based operations and one-sided communication operations, they usu-

ally do not involve synchronization calls which would facilitate failure propagation

and notification. Because of this, after a failure the state of any open file pointers

is left undefined. To help mitigate this indefinite result, users are encouraged to use

a communicator which contains the same group of processes as those involved in an

58

MPI file object to ensure that all processes remain functional after critical I/O calls.

While this does create more overhead for file operations, it is less overhead than would

be introduced by redefining the I/O operations to synchronize on each operation to

ensure that all processes were successful.

5.2.2 ULFM Functions for One-Sided Communication

To assist with failure notification and recovery, two new functions have been

introduced for MPI one-sided communication. These functions closely mirror similar

functions found in the communicator-based recovery Section 5.1.

The first function, MPI_WIN_REVOKE is identical to MPI_COMM_REVOKE, but with

MPI windows rather than MPI communicators. When any process involved in a

window calls MPI_WIN_REVOKE, all other processes are eventually notified by receiving

the error code, MPI_ERR_REVOKED. From this point on, all non-local operations must

continue to return the error code MPI_ERR_REVOKED. As with MPI_COMM_REVOKE, this

operation is both non-local and non-collective, meaning that if any process in the

window calls the function, it impacts all other processes without a matching call.

The second function, MPI_WIN_GET_FAILED provides a mechanism to retrieve the

group of processes which are locally known to have failed at the time of calling. Note

that this function is similar to the combined meaning of MPI_COMM_FAILURE_ACK

and MPI_COMM_FAILURE_GET_ACKED. The reason these functions are combined is that

there is no need to acknowledge the failure to allow wildcard operations to complete.

One-sided communication does not contain a similar operation.

5.2.3 ULFM Functions for File I/O

As with failure notification, recovery functions for File I/O are also minimal. The

only function provided is MPI_FILE_REVOKE. Again, this function is non-local and

non-collective and will notify all other processes involved in the MPI file and cause

all subsequent non-local operations to return the error code MPI_ERR_REVOKED.

59

When deciding whether to include a function to retrieve the failed processes from

the file object, it was decided that a valid reference point to describe the failed

processes does not exist. In communicators and windows, it is possible to retrieve the

group of processes involved in the communication object. However, for file objects,

this option is not available. This makes describing the failed processes difficult and

the need for a function such as MPI_FILE_GET_FAILED unnecessary.

5.3 ULFM in Applications

ULFM has already been ported to some existing applications to demonstrate its

usability in real-world scenarios. This section describes its use in the linear algebra

ABFT-QR algorithm detailed in Section 4.5.

5.3.1 Example: QR-Factorization

This example is another proof of concept demonstration as in Section 4.5. The ABFT

algorithm for QR factorization is the same, but the recovery technique changes to

incorporate the new capabilities of ULFM. Rather than dumping the checkpoints

to disk, restarting the MPI job, re-reading the data from disk, and continuing the

execution, the ULFM version of ABFT-QR does not need to perform all the tasks

to restart MPI. Instead, remaining processes can start a replacement for the failed

process and perform forward recovery without needing to restart the existing MPI

processes.

When a process failure is detected in the QR algorithm, an error is returned to the

application. The application revokes the communicator being used by the BLACS

(Basic Linear Algebra Communication Subroutines) [30] library to ensure that all

processes are notified of the process failure (see the section on BLACS below for a

description of the modifications to BLACS to enable fault tolerance). After revoking

the communicator with the failed process, the remaining processes create a working

60

communicator using MPI_COMM_SHRINK. Using the new communicator, they spawn

a new process to replace the failed process. By using MPI_INTERCOMM_MERGE and

MPI_COMM_SPLIT, they can reposition the new process to have the same rank as the

original process which it replaced. This means that the ABFT algorithm can continue

as before once the data recovery is complete.

BLACS

BLACS is the intermediate library used by ScaLAPACK to abstract the communica-

tion in the linear algebra codes. While at one time it provided an abstraction for many

communication libraries and platforms (MPI, PVM, HP Exemplar, IBM SP (MPI),

Intel series (NX), and SGI Origin 2000 (MPI)), as most of these libraries have become

unnecessary and merged together, BLACS has reduced its set of supported libraries

to only MPI. This simplified the changes needed to repair the library in the event

of failure. BLACS already provides a function to use a custom MPI communicator

as a basis for communication. By using this functions, the application can provide

a working communicator at the beginning of execution and a repaired communicator

after failures are detected and corrected.

The necessary modifications to BLACS were related to the fact that BLACS

assumes MPI_COMM_WORLD to be a working and complete communicator. At the

time of writing for BLACS, neither dynamic processes nor fault tolerance were being

considered in the context of MPI and thus both assumptions are correct. Now that

new processes can be spawned which no longer are in the scope of the original

MPI_COMM_WORLD, and processes can fail which causes communicators to become

unusable, these original assumptions are no longer valid.

To repair the internal information needed by BLACS, the user needs to call

blacs_set to set the values of the processor’s rank in the currently used communi-

cator and the size of the communicator. After this, the remaining internal data used

by BLACS can either be ignored or is repaired by providing a new communicator.

61

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

%
 d

if
fe

re
n

c
e

U
L

F
M

 i
s
 f

a
s
te

r
V

a
n

il
la

 i
s
 f

a
s
te

r

A
ll
R

e
d

u
c
e
 4

B

A
ll
R

e
d

u
c
e
 4

M
B

A
ll
to

A
ll
 4

B

A
ll
to

A
ll
 4

M
B

B
c
a
s
t

4
B

B
c
a
s
t

4
M

B

R
e
d

u
c
e
 4

B

R
e
d

u
c
e
 4

M
B

S
e
n

d
R

e
c
v
 4

B

S
e
n

d
R

e
c
v
 4

M
B

P
in

g
P

in
g

 4
B

P
in

g
P

in
g

 4
M

B

P
in

g
P

o
n

g
 4

B

P
in

g
P

o
n

g
 4

M
B

B
a
rr

ie
r

Bandwidth benchmark
Latency benchmark

Figure 5.5: Relative difference between ULFM and Vanilla Open MPI on Shared
Memory

5.4 ULFM Performance

Though the ULFM implementation is designed to be a reference implementation

and therefore will not achieve the performance of a fully tested and supported

MPI implementation, we do want to demonstrate that even under such conditions,

reasonable performance can be expected. To evaluate the performance of ULFM,

we have two main types of tests. The first set of tests will demonstrate that ULFM

does not introduce a significant overhead to a failure-free execution by demonstrating

latency and bandwidth tests. The second type of test will show the performance of

ULFM when executing the ABFT-QR Factorization code described in Section 5.3.1.

5.4.1 MPI Overhead

The first set of tests demonstrates the overhead of the changes made in the MPI

implementation. This work builds on the work demonstrated in Chapter 4 to support

62

1-byte Latency (microseconds) (cache hot)
Interconnect Vanilla Std. Dev. Enabled Std. Dev. Difference
Shared Memory 0.8008 0.0093 0.8016 0.0161 0.0008
TCP 10.2564 0.0946 10.2776 0.1065 0.0212
OpenIB 4.9637 0.0018 4.9650 0.0022 0.0013

Bandwidth (Mbps) (cache hot)
Interconnect Vanilla Std. Dev. Enabled Std. Dev. Difference
Shared Memory 10,625.92 23.46 10,602.68 30.73 -23.24
TCP 6,311.38 14.42 6,302.75 10.72 -8.63
OpenIB 9,688.85 3.29 9,689.13 3.77 0.28

Table 5.1: NetPIPE results on Smoky.

CoF. The runtime found in CoF is the same for both versions of MPI, so the

performance discussions in Section 4.6.1 are also valid for ULFM.

Intel MPI Benchmarks

We start with a demonstration of latency and bandwidth using the Intel MPI

Benchmark test suite [2]. This suite has many tests to measure the performance

of everything from collective operations to latency times. We run this test using

“Romulus”, a large shared memory machine at the University of Tennessee. In

Figure 5.5 we see that the impact of the ULFM changes to MPI are negligible,

as expected. For tests where the default Open MPI performed better, the bar is

above the center line, and for tests where ULFM had better performance, the bar is

below the center line. For all of the tests, the relative difference remains below 5%,

which is within the standard deviation of the tests on that machine, showing that

any difference in the performance of the two implementations is negligible.

NetPIPE

The next test found in Table 5.1 uses the NetPIPE [6] benchmark (version 3.7) to

measure the 1-byte latency and bandwidth of both Vanilla Open MPI and ULFM.

Here again, we find that any difference between the two implementations is within

both the noise limit of the network and the standard deviation of the test, showing

63

 0

 10

 20

 30

 40

 50

 60

 70

 80

8 16 32 64 128 256 512

C
u

m
u

la
te

d
 T

im
e
 (

s
)

Number of processes

F
T

n
o

 F
T

F
T

n
o

 F
T

F
T

n
o

 F
T F
T

n
o

 F
T

F
T

n
o

 F
T

F
T

n
o

 F
T

F
T

n
o

 F
T

Solve
Setup
SStruct

Figure 5.6: Comparison of Sequoia-AMG running at different scales with ULFM and
Vanilla Open MPI

that the impact of the ULFM modifications on a failure-free MPI environment is

minimal.

Sequoia-AMG

To demonstrate the impact of the ULFM modifications on a full application, we

used the Sequoia-AMG [9] benchmark on “Smoky”, a 512 node cluster at Oak

Ridge National Laboratory where each node contains four quad-core 2.0 GHz AMD

Opteron processors with 2 GB of memory per core. The benchmark is an Algebraic

Multi-Grid (AMG) linear system solver for unstructured mesh physics and makes

heavy use of MPI. We measured the weak scaling results and found that there was

virtually no difference between the ULFM MPI performance and the Vanilla Open

MPI performance. It is important to remember the difference between the type

of results we see here and the results seen in Section 5.4.2. These tests do not

contain modifications to undergo failure or process recovery, but are only measuring

the overhead of the MPI implementation.

64

 0

 100

 200

 300

 400

 500

 600

 700

 0 16 32 48 64 80 96 112 128

0k 4k 8k 12k 16k 20k 24k 28k 32k

P
e
rf

o
rm

a
n

c
e
 (

G
fl

o
p

/s
)

Number of Processes

QR Factorization Performance

Problem Size (N)

ScaLAPACK (Open MPI)

ScaLAPACK (ULFM MPI)

ABFT (Open MPI)

ABFT (ULFM MPI)

Figure 5.7: Weak-Scaling performance of ABFT-QR on Grid5000 ’Graphene’
compared to ScaLAPACK in both Vanilla Open MPI and the ULFM version

5.4.2 ABFT-QR Factorization

As discussed in Section 5.3.1, the ABFT-QR Factorization code has been modified

to work with ULFM to demonstrate how ULFM can be leveraged to provide fault

tolerance to a “real world” algorithm. Here we discuss the performance of the

algorithm using a machine found in Grid’5000 ∗. We used the “Graphene” cluster at

the Nancy site. “Graphene” is a 144 node cluster using Intel Xeon X3440 2.53 Ghz 4

∗ Acknowledgment: Experiments presented in this paper were carried out using the Grid’5000
experimental testbed, being developed under the INRIA ALADDIN development action with
support from CNRS, RENATER and several Universities as well as other funding bodies (see
https://www.grid5000.fr).

65

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 16 32 48 64 80 96 112 128

0k 4k 8k 12k 16k 20k 24k 28k 32k

P
e
rc

e
n

t
O

v
e
rh

e
a
d

Number of Processes

QR Factorization Performance

Problem Size (N)

Open MPI

ULFM MPI

Figure 5.8: Overhead of ABFT with Vanilla Open MPI and ULFM MPI

core processors, 16 GB of memory, and Infiniband-20G cards. As with the IMB tests

above, for all tests performed here, we used the tcp BTL.

The first test in Figure 5.7 demonstrates the performance overhead of our

modifications to the ULFM library. In this graph, we see that our changes have

almost no impact on the results of the test which we will use as an established fact

for the remainder of the discussion. This test also demonstrates the weak scaling

capability of the ABFT algorithm using both the original Open MPI library and the

ULFM MPI library.

In Figure 5.8, we show the overhead of the ABFT algorithm itself using the same

original data. While the gap appears to grow in Figure 5.7, Figure 5.8 shows that

the relative difference between the two implementations actually stabilizes. This is

66

 0

 100

 200

 300

 400

 500

 600

 700

5k 10k 15k 20k 25k 30k 35k 40k 45k

P
e
rf

o
rm

a
n

c
e
 (

G
fl

o
p

/s
)

Matrix Size (N)

QR Factorization Performance

ABFT (0 failures)

ABFT (1 failure)

Figure 5.9: Strong-Scaling performance of ABFT-QR on Grid5000 ’Graphene’ with
no failures and one failure

the expected result for this type of test. For small problem sizes, the overhead will

be high because the problem is not large enough to fill the pipeline of the machines.

However, as the problem size increases, the experienced overhead stabilizes at around

20% of the execution time. While we expect that through more optimization, this

overhead could shrink, perhaps significantly, it will never disappear entirely as the

ABFT algorithm will always incur overhead from the data protection schemes.

Now that the overhead of the MPI implementation itself and the ABFT code

has been established, the most interesting result of the QR factorization test is to

demonstrate the overhead of the failures themselves. To show this, we used a strong

scaling test, where the number of processes is held steady at 128 nodes and the

67

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

5k 10k 15k 20k 25k 30k 35k 40k 45k

P
e
rc

e
n

t
O

v
e
rh

e
a
d

Matrix Size (N)

QR Factorization Overhead

ULFM

Figure 5.10: Overhead of one failure with ABFT-QR on ULFM MPI

problem size increases from 8,000 to 44,000. The results of this test are not directly

comparable to the results of the previous tests as the configuration of the MPI library

was slightly altered. Figure 5.9 demonstrates the performance of the ABFT algorithm

with no failures and again with one failure using our ULFM implementation of MPI.

Here we see that the relative overhead of the failure seems to be relatively low and

the algorithm still achieves good performance.

We quantify this overhead in Figure 5.10 where we see that the overhead of the

failure diminishes quickly to close to 8%, though it would probably continue to drop

at larger scales. We expect this value to decrease due to the relatively low overhead

of failure recovery. The cost of recovery itself (as opposed to the data protection

built into the ABFT algorithm) is only the cost of replacing the failed process and

68

 0

 2

 4

 6

 8

 10

 12

5k 10k 15k 20k 25k 30k 35k 40k 45k

T
im

e
 (

s
)

Matrix Size (N)

ULFM Execution Time

MPI Recovery

ABFT Recovery

Figure 5.11: Recovery time of MPI and Data (via ABFT) on Grid5000

repairing the data in the matrix. These costs are detailed in Figure 5.11. The MPI

recovery time stays constant as the matrix size increases and the number of processes

remains constant. This number stays relatively low at around 400 milliseconds to

perform all of the recovery operations (REVOKE, SHRINK, SPAWN, MERGE, and SPLIT).

The ABFT recovery time continues to scale with the problem size as the data recovery

operations perform reductions across the entire matrix to calculate the missing data.

Again these numbers are around the expected values and account for the disparity

between the failure-free execution and the execution where a failure is injected early

in the computation.

69

5.5 Evaluation of ULFM

Where CoF fell short of many of the goals in Chapter 3, ULFM is purposely designed

to fulfill each of them. It provides the maximum amount of flexibility for fault

tolerance because it is a minimal set of functions which provide a platform on which

other types of fault tolerance can be constructed. It maintains resilience in the

face of failures by ensuring that the library provides sufficient failure notification to

prevent deadlock and introduces new constructs to allow the application or library to

introduce more consistency when necessary. While productivity is not the strength

of ULFM itself, it encourages new, portable libraries which will make the ideas of

ULFM more available to non-experts who are not as familiar with the theory of fault

tolerance. More information about this can be found in Chapter 6.

70

Chapter 6

Fault Tolerant Applications and

Libraries

During the ULFM design process, the specific intention has been to not promote one

form of fault tolerance over another. The primary reason for this is because, to this

point, no type of fault tolerance has emerged as a single solution to all applications

and this situation is not expected to change in the future. Applications will always

need to evaluate their execution method and choose the type of fault tolerance which

best fits.

To this end, ULFM was designed to support all types of fault tolerance by

providing a high-performing, portable interface. One of the biggest barriers to entry in

the current field of fault tolerance is the lack of portability for fault tolerant solutions,

specifically those which involve MPI. No MPI implementation has become a de facto

standard for fault tolerance and therefore none has not been adopted into the MPI

Standard itself. It is our hope that this work will eventually provide that foundation

upon with other solutions can build. While ULFM can be a fault tolerance solution

for some applications, the end goal of this work is to encourage other developers to

create libraries which implement both established and new types of fault tolerance

using the mechanisms provided.

71

This section will explore how fault tolerance can be implemented with ULFM,

both from an application perspective, and how libraries could be constructed using

the constructs provided.

6.1 Types of Fault Tolerance

First we will evaluate the fault tolerance methods currently used in the research

community and how they can be re-implemented using ULFM as the foundation for

the MPI communication.

6.1.1 Automatic Methods

Despite the development of new forms of recovery with the potential to replace it,

checkpoint/restart has remained a staple of fault tolerance. This is primarily due to

the fact that it is already ubiquitous, and it is simple to understand and use. Because

of all this, there is no reason to believe that the use of checkpoint/restart is likely to

diminish in the near future.

ULFM makes bringing synchronous checkpoint/restart into the MPI application

simple. An example of this is CoF as discussed in Chapter 4. CoF uses small

checkpoints, but vastly improves the restart time because it does not require the

application to re-enter the batch queue system. ULFM improves this scenario even

more as it no longer requires most of the processes in the application to even restart.

Instead, the application can roll back any processes which needs to recover data, repair

any communication objects in use, and continue with the existing MPI infrastructure.

Asynchronous checkpointing can also be added to ULFM as an external library.

Message logging can be implemented by using existing PMPI hooks to capture

messages as they are sent and received. To recover, a library can provide a function

which simplifies the process of spawning replacement processes, replaying messages

72

to the new processes using the locally logged messages, and continuing the normal

execution.

To implement replication and migration with ULFM, again, the library would

use PMPI hooks to capture messages between processes. This time, rather than

logging the content of messages, the library would redirect messages to the appropriate

processes in the case where they have been moved from their original rank. When the

application (or some separate failure detector) detects a failure (or imminent failure),

it can checkpoint the application, move it to a new processor, and restart it on the

remote machine.

6.1.2 Algorithm Based Fault Tolerance

While ABFT describes a wide range of algorithms, ULFM has been uniquely designed

to support them. Many ABFT algorithms do not require that all processes which

begin an application remain running to completion. An example of such a class of

applications is a Monte-Carlo master/worker application where a master, or group

of master processes divide and distribute work to a pool of worker processes. If a

process in the worker pool fails, the worker does not need to be replaced. Only the

work needs to be recovered, and it is given to another worker to complete in its place.

For these types of applications, ULFM can often support them directly by providing

the simple tool, MPI_COMM_AGREE. When a master process detects a failure, it removes

the process from its internal list of alive workers (possibly informing other masters if

they exist) and continues without any other MPI recover. When the application is

ready to complete, the group of workers can call MPI_COMM_AGREE to determine if all

of the master processes agree that they are finished or need to perform some other

recovery.

For applications which require all processes to continue running through the

application’s completion, ULFM again provides all of the tools necessary. Upon

failure, the application should call MPI_COMM_REVOKE to inform all other processes

73

about the process failure, then the processes collectively call MPI_COMM_SHRINK to

generate a working communicator without the failed processes. Next, the processes

call the existing MPI function MPI_COMM_SPAWN to replace any failed processes with

new ones. MPI_INTERCOMM_MERGE will create a more traditional intracommunicator

from the intercommunicator generated by MPI_COMM_SPAWN. If the original ranks were

important, the application can use MPI_COMM_SPLIT where all processes contribute

the same color to signify that they will all remain in the same communicator and

contribute their desired rank to the “key” value. At this point, the application is

ready to repair any lost data and continue. These functions can be combined into

a convenience function to simplify development, but the construction of an entirely

new library is unnecessary for most forms of ABFT.

6.1.3 Transactional Fault Tolerance

Transactional fault tolerance is similar to the rollback recovery methods found in

checkpoint/restart protocols. However, it also implies more automatic recovery than

is provided in checkpoint/restart. Transactions can be constructed by adding a

new mechanism to expand the functionality of MPI_COMM_AGREE. In addition to the

agreement algorithm, the new function can store the state of the running application

when the agreement algorithm determines that no failures occurred in the previous

transaction, or it can roll the application back to a known good state when the

previous transaction fails. In addition to rolling the existing processes back to a

previous state, the library can perform the recovery methods described in Section 6.1.2

to restore any failed ranks using the existing data from the previous transaction.

6.1.4 Collective Consistency

One of the design decisions made when envisioning ULFM was to have failure

knowledge be local. Failure notification on one process is no guarantee that any other

processes are also aware of the failure. This decision was reached for performance

74

reasons, however some applications may be willing to pay this performance cost

in exchange for global knowledge of failures. For these applications, a library can

easily be constructed to include collective consistency using the tools provided in

ULFM. The goal of collective consistency is to ensure that all processes involved in

a communication operation return an error code uniformly. To do this, a library can

add a call to MPI_COMM_AGREE after the completion of each communication function

which decides the status of previous operations. If any process returned a failure, then

all remaining processes can agree on the return code and provide the same value upon

exit. This allows the application to ignore the implications of local failure notification

and perform recovery accordingly.

6.2 Library Construction

Given the emphasis laid on the ability to construct many varieties of fault tolerance

using the tools provided by ULFM, one of the most important demonstrations to

be made should be properly constructing libraries. The technique to do so was not

as immediately apparent as it may seem so we detail it here to simplify the process

in the future. This is not the only technique to properly construct a fault tolerant

library on top of ULFM, but it can be used as a starting point for future work. More

details, including a complete code example can be found in Appendix B.

6.2.1 Initialization

As with many scientific libraries, before using a library built on ULFM, it is advisable

to create an initialization function. In addition to any usual data initialization

which may occur during this time, this is also where any sub-communicators can

be created. It is important to not base any communicators on MPI_COMM_WORLD as

this communicator will become broken and out of date immediately following the

first recovery or dynamic processing operation. Once a process has failed, there

75

is no way to repair MPI_COMM_WORLD to its original state or to include any new

processes which may be spawned to replace the failed processes. To solve this

problem, applications should provide another communicator, possibly even a simple

duplicate of MPI_COMM_WORLD, into the library through the initialization function so

that sub-communicators can be constructed from this communicator, rather than

MPI_COMM_WORLD, as has become a standard practice in many MPI libraries.

6.2.2 Status Object

Though not required, a status object can greatly simplify recovery later in an

application. The status object can store useful pieces of data to be passed back

and forth around library functions, but for the purposes of fault tolerance, the status

object keeps track of the status of the most recent function calls. When a function is

called, the object is passed into the function and the status of the function is updated

throughout its execution. If a failure occurs and data is being recovered, the library

can refer to the status object to discover what kinds of data to recover and signal the

function that the library has been repaired. A status object is stored in the space of

the calling application or library rather than within the library itself. The reason for

this is so the status object may remain easily savable for fault tolerance, either by

checkpointing, storage on a remote node, or duplication.

6.2.3 The Three R’s

When a failure does occur, a fault tolerant library using ULFM should perform “Three

R’s” to get the library back into a functional state.

Revoke

First, the library should call MPI_COMM_REVOKE on all internal communicators to

ensure that all other processes are alerted to the process failure. As most of the

communicators will be reconstructed when the library is later being repaired anyway,

76

this step does not introduce a level of overhead which would otherwise not have been

present. Once all communicators have been revoked, it is safe to return from the

library.

Return

The low level libraries should not attempt to perform process recovery automatically.

The reason for this is that libraries generally do not make their internal communica-

tors available to outside entities. If a library were to repair its own communicators

by creating new processes to replace any failures, other libraries or parts of the

application would no longer have access to these new processes as they would not

be able to communicate through any existing channels. While it would be possible to

create new communicators to solve this problem, the complexity introduced would not

justify the effort and invalidate the convenience of performing the automatic recovery

in the first place. In addition, the act of spawning new processes requires access to

the original command line parameters. While these could be passed into the library

to facilitate recovery, it is simpler to perform all of the actions at the same level, from

the original application.

Repair

Once the libraries have revoked their internal communicators and returned to the

highest level, the MPI recovery can begin. This should be a collaborative process

between the application and all of the lower level libraries, however it should

start with the application repairing MPI first. Depending on the application, this

repair operation could include spawning new processes to replace any failures, or

it could simply be calling MPI_COMM_SHRINK to remove any failed processes from

the communicators. Once the application has repaired MPI, it should allow the

libraries to repair themselves by providing the new MPI communicator to their repair

functions. If the repair function will also repair any missing or corrupt data, the

77

Application

Library 1

Library 2

MPI_ERR_PROC_FAILED

LIB2_ERR_FAILURE

LIB1_ERR_FAILURE repaired_comm

RepairLib1(lib1_comm)

RepairLib2(lib2_comm)

Repair()

Figure 6.1: ABFT QR and one CoF recovery on Kraken (Lustre).

status object should also be included so the libraries will know the status of their

previous operations and can recover accordingly. The libraries should continue to call

any lower level repair functions for libraries on which they depend until all libraries

have been appropriately repaired.

Overview

Figure 6.1 demonstrates the hierarchy of libraries and how they should be repaired.

Errors will most likely be detected by the lowest level library currently in use. The

libraries should recursively revoke their communicators and return to the next level.

The application should repair the MPI library using the appropriate measures and

allow the libraries to do the same by calling their respective repair functions. Once

all of the recovery is complete, the application can repeat its call to the last function

it was attempting and execution can continue.

78

Obviously, this pattern will not apply to all libraries. Some libraries developed

to provide MPI fault tolerance directly may perform recovery themselves without

returning to the MPI application. Some libraries may not include MPI calls which

would necessitate recovery. However, this is a starting point for those interested

in constructing fault tolerant MPI libraries. For a more complete example, see

Appendix B.

79

Chapter 7

Future Work and Conclusions

7.1 Summary

As machine sizes and problem runtimes have increased over the decades, the rise of

fault tolerance as a field of study has increased to match. Early on, applications

developed methods of error checking and recovery to prevent faults from causing

inconsistent results. Later, as the types of machines on which applications were being

run evolved from large mainframe types of machines to Networks of Workstations

(NoWs), checkpointing became important. Because workstations were considered

unreliable as they could quickly become unavailable due either local use, or more

common failures due to cheaper hardware, applications needed to be able to save

their state during execution and possibly migrate from one machine to another.

This started as a transparent feature that automatically performed checkpointing

and migration and transitioned into a sophisticated system which could be triggered

on-demand by an application, even performing asynchronous checkpoints which could

later be used, along with message logging, to roll back applications to previous states.

All of these methods of fault tolerance were sufficient for the machines on which

they were designed to function. The scale of the machines did not cause contention

for bandwidth to stable storage, and failures did not occur with enough frequency to

80

eclipse the time needed to perform a checkpoint. In recent years and going forward to

projected machine architectures in the near future, these statements will not remain

true. Machine sizes have already eclipsed the million core mark and runtimes for such

large scale, capability applications extend to multiple days.

To solve this problem, new codes using Algorithm Based Fault Tolerance (ABFT)

are now being designed which can repair themselves with very little data necessary.

These algorithms have been proven to be effective and numerically stable, but to

continue their parallel execution, they require a Message Passing Interface (MPI)

library which can consistently provide communication channels, even after a process

failure makes some subset of the machine unusable.

As a first step to provide the desired MPI implementation, we developed a new

protocol called Checkpoint-on-Failure (CoF). This protocol provides an opportunity

for applications to save their state after the application has detected a process failure.

By changing the default MPI Error Handler from MPI_ERRORS_ARE_FATAL to MPI_-

ERRORS_RETURN or another custom error handler, the application is alerted to process

failures and can incur the overhead of saving state only when process failures actually

occur, rather than periodically throughout the application execution. In Chapter 4,

we demonstrated the low overhead and recovery time that CoF provides.

Once the foundational work, such as a resilient runtime, was completed in the

CoF implementation, we introduced a more ambitious project. User Level Failure

Mitigation (ULFM), is a new chapter for the MPI Standard which provides a complete

solution for fault tolerance, not just an improved checkpoint/restart protocol. ULFM

allows ABFT codes to continue execution on all non-failed processes and replace failed

processes with new ones which can be joined with already existing processes using

(already standardized) MPI-2 dynamic processing functions. It does this by providing

a minimal interface which includes failure detection, failure notification, and deadlock

resolution mechanisms, while encouraging the development of new libraries to envision

more complex recovery mechanisms, such as transactions, collective consistency, or

automatic recovery.

81

7.2 Future Work

The tools developed in this work are extensive and sufficient for many styles of fault

tolerance. However, they are not simple enough for developers not familiar with

fault tolerance methods to construct complex recovery mechanisms. For this work

to continue to be successful, more libraries will need to follow to provide interfaces

which make fault tolerance more accessible.

One of the greatest challenges currently faced by researchers in the field of

fault tolerance is apathy from those who they attempt to convince to adopt new

fault tolerance techniques. For many years, scientists who develop codes for high

performance architectures have been warned about the impending need for fault

tolerance and the requirement that their codes be refactored to implement new

protocols. However, the problems were largely resolved by implementing new

automatic fault tolerance solutions, such as checkpoint/restart, which did not require

that existing codes be modified, only that they be recompiled to include a new library.

Now, as new projections demonstrate the need for new methods of fault tolerance

rather than an improved automatic solution [16], the need is not to convince

developers to refactor their existing scientific codes to include fault tolerance, but

to first convince researchers to develop easy to use, portable libraries which simplify

the process of including fault tolerance in existing codes and provide resilience options

for new codes being developed. These libraries will be much more adoptable and will

speed the inclusion of fault tolerance in codes which already have expressed a need

for such tools.

82

Bibliography

83

Bibliography

[1] Global Arrays. [Online]. Available: http://www.emsl.pnl.gov/docs/global/

armci/ 11

[2] Intel MPI Benchmarks. [Online]. Available: http://software.intel.com/en-us/

articles/intel-mpi-benchmarks 63

[3] June, 2011 Top500 List. [Online]. Available: http://www.top500.org/lists/2011/

06/ 25

[4] MPICH. [Online]. Available: http://www.mpich.org 9

[5] MVAPICH2. [Online]. Available: http://mvapich.cse.ohio-state.edu/overview/

mvapich2/ 9

[6] NetPIPE. [Online]. Available: http://www.scl.ameslab.gov/netpipe/ 63

[7] November, 2012 Top500 List. [Online]. Available: http://www.top500.org/lists/

2012/11/ 1

[8] Open MPI. [Online]. Available: http://www.open-mpi.org/ 9, 25

[9] Sequoia AMG Benchmarks. [Online]. Available: https://asc.llnl.gov/sequoia/

benchmarks/ 64

[10] A. M. Agbaria and R. Friedman, “Starfish: Fault-tolerant dynamic MPI

programs on clusters of workstations,” High Performance Distributed Computing,

84

http://www.emsl.pnl.gov/docs/global/armci/
http://www.emsl.pnl.gov/docs/global/armci/
http://software.intel.com/en-us/articles/intel-mpi-benchmarks
http://software.intel.com/en-us/articles/intel-mpi-benchmarks
http://www.top500.org/lists/2011/06/
http://www.top500.org/lists/2011/06/
http://www.mpich.org
http://mvapich.cse.ohio-state.edu/overview/mvapich2/
http://mvapich.cse.ohio-state.edu/overview/mvapich2/
http://www.scl.ameslab.gov/netpipe/
http://www.top500.org/lists/2012/11/
http://www.top500.org/lists/2012/11/
http://www.open-mpi.org/
https://asc.llnl.gov/sequoia/benchmarks/
https://asc.llnl.gov/sequoia/benchmarks/

1999. Proceedings. The Eighth International Symposium on, pp. 167–176, 1999.

24

[11] E. Anderson, Z. Bai, J. DONGARRA, A. Greenbaum, A. McKenney, J. Du Croz,

S. Hammerling, J. Demmel, C. Bischof, and D. Sorensen, “LAPACK: a portable

linear algebra library for high-performance computers,” in Supercomputing ’90:

Proceedings of the 1990 ACM/IEEE conference on Supercomputing. IEEE

Computer Society Press, Oct. 1990. 38

[12] R. Batchu, Y. S. Dandass, A. Skjellum, and M. Beddhu, “MPI/FT: a model-

based approach to low-overhead fault tolerant message-passing middleware,”

Cluster Computing, vol. 7, no. 4, pp. 303–315, 2004. 23

[13] P. A. Bernstein and N. Goodman, “Concurrency control in distributed database

systems,” ACM Computing Surveys (CSUR), vol. 13, no. 2, pp. 185–221, 1981.

19

[14] M. Bhandarkar, L. V. Kale, E. de Sturler, and J. Hoeflinger, “Object-based

adaptive load balancing for MPI programs,” in Proceedings of the International

Conference on Computational Science, San Francisco, CA, LNCS 2074, May

2001, pp. 108–117. 9, 10

[15] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak, C. Germain,

T. Herault, P. Lemarinier, O. Lodygensky, F. Magniette, V. Neri, and A. S. A.

I. . C. Selikhov, “MPICH-V: Toward a Scalable Fault Tolerant MPI for Volatile

Nodes,” in Supercomputing, ACM/IEEE 2002 Conference. 22

[16] G. Bosilca, A. Bouteiller, É. Brunet, F. Cappello, J. Dongarra, A. Guermouche,

T. Herault, Y. Robert, F. Vivien, and D. Zaidouni, “Unified Model for

Assessing Checkpointing Protocols at Extreme-Scale,” Innovative Computing

Laboratory, Département Informatique, GRAND-LARGE - INRIA Saclay - Ile

de France, Joint Laboratory for Petascale Computing, Laboratoire de Recherche

85

en Informatique, ROMA - ENS Lyon / CNRS / Inria Grenoble Rhône-Alpes,

Laboratoire de l’Informatique du Parallélisme, Tech. Rep. RR-7950, May 2012.

17, 82

[17] A. Bouteiller, G. Bosilca, and J. Dongarra, “Redesigning the message logging

model for high performance,” Concurrency and Computation: Practice and

Experience, vol. 22, no. 16, pp. 2196–2211, 2010. 16

[18] P. Bridges, N. Doss, W. Gropp, E. Karrels, E. Lusk, and A. Skjellum,

“Users’ Guide to mpich, a Portable Implementation of MPI,” Mathematics and

Computer Science Division, Argonne National Laboratory, Chicago, IL, Tech.

Rep., 1995. 9

[19] G. Burns, R. Daoud, and J. Vaigl, “LAM: An Open Cluster Environment for

MPI,” in Proceedings of Supercomputing Symposium, 1994, pp. 379–386. 9

[20] D. Callahan, B. L. Chamberlain, and H. P. Zima, “The cascade high

productivity language,” in High-Level Parallel Programming Models and

Supportive Environments, 2004. Proceedings. Ninth International Workshop on,

2004, pp. 52–60. 10

[21] F. Cappello, “Fault Tolerance in Petascale/ Exascale Systems: Current

Knowledge, Challenges and Research Opportunities,” International Journal of

High Performance Computing Applications, vol. 23, no. 3, pp. 212–226, Jul. 2009.

1

[22] W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick, E. Brooks, and K. Warren,

“Introduction to UPC and language specification,” Tech. Rep. CCS-TR-99-157,

May 1999. 11

[23] S. Chakravorty, C. Mendes, and L. Kalé, “Proactive fault tolerance in MPI

applications via task migration,” High Performance Computing-HiPC 2006, pp.

485–496, 2006. 25

86

[24] K. M. Chandy and L. Lamport, “Distributed snapshots : Determining global

states of distributed systems,” in Transactions on Computer Systems, vol. 3(1).

ACM, February 1985, pp. 63–75. 13

[25] Z. Chen, G. E. Fagg, E. Gabriel, J. Langou, T. Angskun, G. Bosilca, and

J. Dongarra, “Building fault survivable MPI programs with FT-MPI using

diskless checkpointing,” in Proceedings for ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, 2005, pp. 213–223. 19

[26] J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, and D. Walker, “A proposal for

a set of parallel basic linear algebra subprograms,” Knoxville, TN, USA, Tech.

Rep., 1995. 38

[27] J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov, A. Petitet,

K. Stanley, D. Walker, and R. C. Whaley, “ScaLAPACK: A portable

linear algebra library for distributed memory computers—Design issues and

performance,” Computer physics communications, vol. 97, no. 1, pp. 1–15, 1996.

38

[28] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. Duff, “A Set of Level 3 Basic

Linear Algebra Subprograms,” ACM Transactions on Mathematical Software,

vol. 16, pp. 1–17, Mar. 1990. 36

[29] J. J. Dongarra and R. A. Geijn, “Two Dimensional Basic Linear Algebra

Communication Subprograms,” Computer Science Department, University of

Tennessee, Knoxville, TN, Tech. Rep. UT CS-91-138, Oct. 1991. 38

[30] J. J. Dongarra and R. C. Whaley, “A User’s Guide to the BLACS v1.0,”

Computer Science Department, University of Tennessee, Knoxville, TN, Tech.

Rep. UT CS-95-281, Mar. 1995. 38, 60

[31] J. Dongarra, L. Blackford, J. Choi et al., “ScaLAPACK user’s guide,” Society

for Industrial and Applied Mathematics, Philadelphia, PA, 1997. 36

87

[32] P. Du, A. Bouteiller et al., “Algorithm-based fault tolerance for dense matrix

factorizations,” in 17th SIGPLAN PPoPP. ACM, 2012, pp. 225–234. xii, 36,

37, 42

[33] J. Duell, “The Design and Implementation of Berkeley Lab’s Linux

Checkpoint/Restart,” Tech. Rep. LBNL-54941, December 2002. 15, 16

[34] G. Fagg and J. Dongarra, “FT-MPI: Fault tolerant MPI, supporting dynamic

applications in a dynamic world,” EuroPVM/MPI, 2000. 9, 20, 51

[35] G. E. Fagg, A. Bukovsky, and J. J. Dongarra, “HARNESS and fault tolerant

MPI,” Parallel Computing, vol. 27, no. 11, pp. 1479–1495, 2001. 21

[36] K. Ferreira, J. Stearley, J. H. Laros, III, R. Oldfield, K. Pedretti, R. Brightwell,

R. Riesen, P. G. Bridges, and D. Arnold, “Evaluating the viability of process

replication reliability for exascale systems,” p. 44, 2011. 17

[37] E. Gabriel, G. Fagg, G. Bosilca, T. Angskun, J. Dongarra, J. Squyres, V. Sahay,

P. Kambadur, B. Barrett, and A. Lumsdaine, “Open MPI: Goals, concept, and

design of a next generation MPI implementation,” Recent Advances in Parallel

Virtual Machine and Message Passing Interface, pp. 353–377, 2004. 9, 25

[38] M. Herlihy, J. Eliot, and B. Moss, “Transactional Memory: Architectural

Support For Lock-free Data Structures,” in Computer Architecture, 1993.,

Proceedings of the 20th Annual International Symposium on. 19

[39] K.-H. Huang and J. Abraham, “Algorithm-Based Fault Tolerance for Matrix

Operations,” IEEE Transactions on Computers, no. 6, pp. 518–528, 1984. 18

[40] W. Huang, G. Santhanaraman, H. W. Jin, Q. Gao, and D. K. Panda, “Design of

High Performance MVAPICH2: MPI2 over InfiniBand,” Cluster Computing and

the Grid, 2006. CCGRID 06. Sixth IEEE International Symposium on, vol. 1. 9

88

[41] J. Hursey, T. Naughton, G. Vallee, and R. L. Graham, “A log-scaling fault

tolerant agreement algorithm for a fault tolerant MPI,” in Recent Advances

in the Message Passing Interface, ser. Lecture Notes in Computer Science,

Y. Cotronis, A. Danalis, D. S. Nikolopoulos, and J. Dongarra, Eds. Springer

Berlin Heidelberg, 2011, vol. 6960, pp. 255–263. 47

[42] J. Hursey, J. M. Squyres, T. I. Mattox, and A. Lumsdaine, “The design and

implementation of checkpoint/restart process fault tolerance for Open MPI,”

International Parallel and Distributed Processing Symposium (IPDPS 2007), pp.

1–8, 2007. 22

[43] L. V. Kale and S. Krishnan, “CHARM++: A Portable Concurrent Object

Oriented System Based On C++,” in In Proceedings of the Conference on Object

Oriented Programming Systems, Languages and Applicaions, 1993, pp. 91–108.

10

[44] S. Kulkarni and A. Arora, “Automating the addition of fault-tolerance,” Formal

Techniques in Real-Time and Fault-Tolerant Systems, pp. 339–359, 2000. 8

[45] M. Litzkow and M. Solomon, “Supporting checkpointing and process migration

outside the UNIX kernel,” in Usenix Winter Conference. San Francisco, CA:

Citeseer, 1992. 15, 16

[46] M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny, “Checkpoint and

migration of UNIX processes in the Condor distributed processing system,” Tech.

Rep. 1346, Apr. 1997. 15

[47] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease, and E. Aprà,

“Advances, applications and performance of the global arrays shared memory

programming toolkit,” International Journal of High Performance Computing

Applications, vol. 20, no. 2, pp. 203–231, 2006. 11

89

[48] J. S. Plank, M. Beck, G. Kingsley, and K. Li, “Libckpt: Transparent

checkpointing under Unix,” in TCON’95: Proceedings of the USENIX 1995

Technical Conference Proceedings. USENIX Association, Jan. 1995. 14, 18

[49] J. Plank, Y. Kim, and J. Dongarra, “Algorithm-based diskless checkpointing

for fault tolerant matrix operations,” Fault-Tolerant Computing, 1995. FTCS-

25. Digest of Papers., Twenty-Fifth International Symposium on, pp. 351–360,

1995. 18

[50] S. Rao, L. Alvisi, and H. M. Vin, “Egida: An extensible toolkit for low-overhead

fault-tolerance,” Fault-Tolerant Computing, 1999. Digest of Papers. Twenty-

Ninth Annual International Symposium on, pp. 48–55, 1999. 16, 24

[51] H. Richardson, “High performance fortran: history, overview and current

developments,” 1.4 TMC-261, Thinking Machines Corporation, Tech. Rep., 1996.

11

[52] J. F. Ruscio, M. A. Heffner, and S. Varadarajan, “Dejavu: Transparent user-

level checkpointing, migration, and recovery for distributed systems,” IEEE

International Parallel and Distributed Processing Symposium, 2007. IPDPS

2007., pp. 1–10, 2007. 24

[53] S. Sankaran, “The LAM/MPI Checkpoint/Restart Framework: System-

Initiated Checkpointing,” International Journal of High Performance Computing

Applications, vol. 19, no. 4, pp. 479–493, Nov. 2005. 21

[54] B. Schroeder and G. A. Gibson, “Understanding Failures in Petascale

Computers,” SciDAC, Journal of Physics: Conference Series, vol. 78, 2007. 1

[55] J. M. Squyres and A. Lumsdaine, “A Component Architecture for LAM/MPI,”

in Proceedings, 10th European PVM/MPI Users’ Group Meeting, ser. Lecture

Notes in Computer Science, no. 2840. Venice, Italy: Springer-Verlag, September

/ October 2003, pp. 379–387. 9

90

[56] V. S. Sunderam, “PVM: A framework for parallel distributed computing,”

Concurrency: practice and experience, vol. 2, no. 4, pp. 315–339, Dec. 1990.

9

[57] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in

practice: The Condor experience,” Concurrency and Computation: Practice and

Experience, vol. 17, no. 24, pp. 323–356, 2005. 2

[58] The MPI Forum, “MPI: A Message-Passing Interface Standard, Version 3.0,”

Tech. Rep., 2012. 8, 30

[59] J. P. Walters and V. Chaudhary, “Replication-Based Fault Tolerance for MPI

Applications,” IEEE Transactions on Parallel and Distributed Systems, vol. 20,

no. 7, pp. 997–1010. 21

[60] Y.-M. Wang, Y. Huang, K.-P. Vo, P. Chung, and C. Kintala, “Checkpointing and

its applications,” Fault-Tolerant Computing, 1995. FTCS-25. Digest of Papers.,

Twenty-Fifth International Symposium on, pp. 22–31, 1995. 14, 16

91

Appendix

92

Appendix A

Process Fault Tolerance

Chapter Submitted to MPI Forum. Section references not preceded by an

A refer to the MPI 3.0 Standard document.

A.1 Introduction

Long running and large scale applications are at increased risk of encountering

process failures during normal execution. We consider a process failure as a fail-stop

failure; failed processes become permanently unresponsive to communications. This

chapter introduces the MPI features that support the development of applications and

libraries that can tolerate process failures. The approach described in this chapter is

intended to prevent the deadlock of processes while avoiding impact on the failure-free

execution of an application.

The expected behavior of MPI in the case of a process failure is defined by the

following statements: any MPI operation that involves a failed process must not

block indefinitely, but either succeed or raise an MPI exception (see Section A.2);

an MPI operation that does not involve the failed process will complete normally,

unless interrupted by the user through provided functionality. Asynchronous failure

propagation is not required. If an application needs global knowledge of failures, it

93

can use the interfaces defined in Section A.3 to explicitly propagate locally detected

failures.

An implementation that does not tolerate process failures must provide the

interfaces and semantics defined in this chapter as long as no failure occurred. It

must never raise an exception of class MPI_ERR_PROC_FAILED or MPI_ERR_PENDING

because of a process failure. This chapter does not define process failure semantics for

the operations specified in Chapters 10, 11 and 12, therefore they remain undefined

by the MPI standard.

Advice to Users Many of the operations and semantics described in this chapter are

only applicable when the MPI application has replaced the default error handler

MPI_ERRORS_ARE_FATAL on, at least, MPI_COMM_WORLD.

A.2 Failure Notification

This section specifies the behavior of an MPI communication operation when failures

occur on processes involved in the communication. A process is considered involved

in a communication if any of the following is true:

1. the operation is collective and the process appears in one of the groups of the

associated communication object;

2. the process is a specified or matched destination or source in a point-to-point

communication;

3. the operation is an MPI_ANY_SOURCE receive operation and the failed process

belongs to the source group.

Therefore, if an operation does not involve a failed process (such as a point-to-

point message between two non-failed processes), it must not raise a process failure

exception.

94

Advice to Implementors A correct MPI implementation may provide failure detection

only for processes involved in an ongoing operation, and postpone detection of

other failures until necessary. Moreover, as long as an implementation can

complete operations, it may choose to delay raising an error. Another valid

implementation might choose to raise an error as quickly as possible.

Non-blocking operations must not raise an exception about process failures during

initiation. All process failure errors are postponed until the corresponding completion

function is called.

A.2.1 Startup and Finalize

Advice to Implementors If a process fails during MPI_INIT but its peers are able

to complete the MPI_INIT successfully, then a high quality implementation

will return MPI_SUCCESS and delay the reporting of the process failure to a

subsequent MPI operation.

MPI_FINALIZE will complete successfully even in the presence of process failures.

Advice to Users Considering Example 8.7 in Section 8.7, the process with rank 0

in MPI_COMM_WORLD may have failed before, during, or after the call to MPI_-

FINALIZE. MPI only provides failure detection capabilities up to when MPI_-

FINALIZE is invoked and provides no support for fault tolerance during or after

MPI_FINALIZE. Applications are encouraged to implement all rank-specific code

before the call to MPI_FINALIZE to handle the case where process 0 in MPI_-

COMM_WORLD fails.

A.2.2 Point-to-Point and Collective Communication

An MPI implementation raises the following error classes to notify users that a point-

to-point communication operation could not complete successfully because of the

failure of involved processes:

95

• MPI_ERR_PENDING indicates, for a non-blocking communication, that the

communication is a receive operation from MPI_ANY_SOURCE and no matching

send has been posted, yet a potential sender process has failed. Neither the

operation nor the request identifying the operation are completed. Note that

the same error class is also used in status when another communication raises

an exception during the same operation (as defined in Section 3.7.5).

• In all other cases, the operation raises an exception of class MPI_ERR_PROC_-

FAILED to indicate that the failure prevents the operation from following its

failure-free specification. If there is a request identifying the point-to-point

communication, it is completed. Future point-to-point communication with the

same process on this communicator must also raise MPI_ERR_PROC_FAILED.

Advice to Users To acknowledge a failure and discover which processes failed, the

user should call MPI_COMM_FAILURE_ACK (as defined in Section A.3.1).

When a collective operation cannot be completed because of the failure of an

involved process, the collective operation raises an error of class MPI_ERR_PROC_-

FAILED.

Advice to Users Depending on how the collective operation is implemented and

when a process failure occurs, some participating alive processes may raise an

exception while other processes return successfully from the same collective

operation. For example, in MPI_BCAST, the root process may succeed before

a failed process disrupts the operation, resulting in some other processes

raising an error. However, it is noteworthy that for collective operations on

an intracommunicator in which all processes contribute to the result and all

processes receive the result, processes which do not enter the operation due

to process failure provoke all surviving ranks to raise MPI_ERR_PROC_FAILED.

Similarly, for the same collective operations on an intercommunicator, a process

in the remote group which failed before entering the operation has the same

effect on all surviving ranks of the local group.

96

Advice to Users Note that communicator creation functions (like MPI_COMM_DUP or

MPI_COMM_SPLIT) are collective operations. As such, if a failure happened

during the call, an error might be raised at some processes while others

succeed and obtain a new communicator. While it is valid to communicate

between processes which succeeded to create the new communicator, it is the

responsibility of the user to ensure that all involved processes have a consistent

view of the communicator creation, if needed. A conservative solution is to have

each process either revoke (see Section A.3.1) the parent communicator if the

operation fails, or call an MPI_BARRIER on the parent communicator and then

revoke the new communicator if the MPI_BARRIER fails.

When a communication operation raises an exception related to process failure,

the content of the output buffers is undefined.

A.2.3 Dynamic Process Management

Dynamic process management functions require some additional semantics from the

MPI implementation as detailed below.

1. If the MPI implementation raises an error related to process failure to the root

process of MPI_COMM_CONNECT or MPI_COMM_ACCEPT, at least the root processes

of both intracommunicators must raise the same error of class MPI_ERR_PROC_-

FAILED (unless required to raise MPI_ERR_REVOKED as defined by A.3.1).

2. If the MPI implementation raises an error related to process failure to the

root process of MPI_COMM_SPAWN, no spawned processes should be able to

communicate on the created intercommunicator.

Advice to Users As with communicator creation functions, it is possible that if

a failure happens during dynamic process management operations, an error

might be raised at some processes while others succeed and obtain a new

communicator.

97

A.2.4 One-Sided Communication

As with all nonblocking operations, one-sided communication operations should

delay all failure notification until their synchronization operations which may raise

MPI_ERR_PROC_FAILED (see Section A.2). If the implementation raises an error

related to process failure from the synchronization function, the epoch behavior is

unchanged from the definitions in Section 11.4. As with collective operations over

MPI communicators, it is possible that some processes have detected a failure and

raised MPI_ERR_PROC_FAILED, while others returned MPI_SUCCESS.

Unless specified below, the state of memory targeted by any process in an epoch

in which operations raised an error related to process failure is undefined.

1. If a failure is to be reported during active target communication functions

MPI_WIN_COMPLETE or MPI_WIN_WAIT (or the non-blocking equivalent MPI_-

WIN_TEST), the epoch is considered completed and all operations not involving

the failed processes must complete successfully.

2. If the target rank has failed, MPI_WIN_LOCK and MPI_WIN_UNLOCK operations

raise an error of class MPI_ERR_PROC_FAILED. If the owner of a lock has failed,

the lock cannot be acquired again, and all subsequent operations on the lock

must raise MPI_ERR_PROC_FAILED.

Advice to Users It is possible that request-based RMA operations complete success-

fully while the enclosing epoch completes by raising error due to process failure.

In this scenario, the local buffer is valid but the remote targeted memory is

undefined.

A.2.5 I/O

I/O error classes and their consequences are defined in Section 13.7. The following

section defines the behavior of I/O operations when MPI process failures prevent their

successful completion. Since collective I/O operations may not synchronize with other

98

processes, process failures may not be reported during a collective I/O operation. If

a process failure prevents a file operation from completing, an MPI exception of class

MPI_ERR_PROC_FAILED is raised. Once an MPI implementation has raised an error of

class MPI_ERR_PROC_FAILED, the state of the file pointer is undefined.

Advice to Users Users are encouraged to use MPI_COMM_AGREE on a communicator

containing the same group as the file handle, to deduce the completion status

of collective operations on file handles and maintain a consistent view of file

pointers.

A.3 Failure Mitigation Functions

A.3.1 Communicator Functions

MPI provides no guarantee of global knowledge of a process failure. Only processes

involved in a communication operation with the failed process are guaranteed to

eventually detect its failure (see Section A.2). If global knowledge is required, MPI

provides a function to revoke a communicator at all members.

MPI COMM REVOKE(comm)

IN comm communicator (handle)

This function notifies all processes in the groups (local and remote) associated with

the communicator comm that this communicator is now considered revoked. This

function is not collective and therefore does not have a matching call on remote

processes. It is erroneous to call MPI_COMM_REVOKE on a communicator for which

no operation raised an MPI exception related to process failure. All alive processes

belonging to comm will be notified of the revocation despite failures. The revocation

of a communicator completes any non-local MPI operations on comm by raising

an error of class MPI_ERR_REVOKED, with the exception of MPI_COMM_SHRINK and

99

MPI_COMM_AGREE (and its nonblocking equivalent). A communicator becomes revoked

as soon as:

1. MPI_COMM_REVOKE is locally called on it;

2. Any MPI operation raised an error of class MPI_ERR_REVOKED because another

process in comm has called MPI_COMM_REVOKE.

Once a communicator has been revoked, all subsequent non-local operations on

that communicator, with the exception of MPI_COMM_SHRINK and MPI_COMM_AGREE

(and its nonblocking equivalent), are considered local and must complete by raising

an error of class MPI_ERR_REVOKED.

Advice to Users High quality implementations are encouraged to do their best to free

resources locally when the user calls free operations on revoked communication

objects, or communication objects containing failed processes.

MPI COMM SHRINK(comm, newcomm)

IN comm communicator (handle)

OUT newcomm communicator (handle)

This collective operation creates a new intra or inter communicator newcomm from

the revoked intra or inter communicator comm respectively by excluding its failed

processes as detailed below. It is erroneous MPI code to call MPI_COMM_SHRINK on a

communicator which has not been revoked (as defined above) and will raise an error

of class MPI_ERR_ARG.

This function must not raise an error due to process failures (error classes MPI_-

ERR_PROC_FAILED and MPI_ERR_REVOKED). All processes that succeeded agreed on the

content of the group of processes that failed. This group includes at least every process

failure that has raised an MPI exception of class MPI_ERR_PROC_FAILED or MPI_ERR_-

PENDING. The call is semantically equivalent to an MPI_COMM_SPLIT operation that

would succeed despite failures, and where living processes participate with the same

100

color, and a key equal to their rank in comm and failed processes implicitly contribute

MPI_UNDEFINED.

Advice to Users This call does not guarantee that all processes in newcomm are alive.

Any new failure will be detected in subsequent MPI operations.

MPI COMM FAILURE ACK(comm)

IN comm communicator (handle)

This local operation gives the users a way to acknowledge all locally notified failures on

comm. After the call, unmatched MPI_ANY_SOURCE receptions that would have raised

an error code MPI_ERR_PENDING due to process failure (see Section A.2.2) proceed

without further reporting of errors due to those acknowledged failures.

Advice to Users Calling MPI_COMM_FAILURE_ACK on a communicator with failed

processes does not allow that communicator to be used successfully for collective

operations. Collective communication on a communicator with acknowledged

failures will continue to raise an error of class MPI_ERR_PROC_FAILED as defined

in Section A.2.2. To reliably use collective operations on a communica-

tor with failed processes, the communicator should first be revoked using

MPI_COMM_REVOKE and then a new communicator should be created using

MPI_COMM_SHRINK.

MPI COMM FAILURE GET ACKED(comm, failedgroup)

IN comm communicator (handle)

OUT failedgroup group (handle)

This local operation returns the group failedgrp of processes, from the communicator

comm, which have been locally acknowledged as failed by preceding calls to MPI_-

COMM_FAILURE_ACK. The failedgrp can be empty, that is, equal to MPI_GROUP_EMPTY.

101

MPI COMM AGREE(comm, flag)

IN comm communicator (handle)

INOUT flag boolean flag

This function performs a collective operation on the group of living processes in

comm. On completion, all living processes must agree to set the output value of flag

to the result of a logical ’AND’ operation over the input values of flag. This function

must not raise an error due to process failure (error classes MPI_ERR_PROC_FAILED

and MPI_ERR_REVOKED), and processes that failed before entering the call do not

contribute to the operation.

If comm is an intercommunicator, the value of flag is a logical ’AND’ operation

over the values contributed by the remote group (where failed processes do not

contribute to the operation).

Advice to Users MPI_COMM_AGREE maintains its collective behavior even if the comm

is revoked.

MPI COMM IAGREE(comm, flag, req)

IN comm communicator (handle)

INOUT flag boolean flag

OUT req request (handle)

This function has the same semantics as MPI_COMM_AGREE except that it is nonblock-

ing.

A.3.2 One-Sided Functions

MPI WIN REVOKE (win)

IN win window (handle)

This function notifies all processes within the window win that this window is now

considered revoked. A revoked window completes any non-local MPI operations on

win with error and causes any new operations to complete with error. Once a window

102

has been revoked, all subsequent non-local operations on that window are considered

local and must fail with an error of class MPI_ERR_REVOKED.

MPI WIN GET FAILED(win, failedgroup)

IN win window (handle)

OUT failedgroup group (handle)

This local operation returns the group failedgrp of processes from the window win

which are locally known to have failed.

Advice to Users MPI makes no assumption about asynchronous progress of the failure

detection. A valid MPI implementation may choose to only update the group

of locally known failed processes when it enters a synchronization function.

Advice to Users It is possible that only the calling process has detected the reported

failure. If global knowledge is necessary, processes detecting failures should use

the call MPI_WIN_REVOKED.

A.3.3 I/O Functions

MPI FILE REVOKE (fh)

IN fh file (handle)

This function notifies all ranks within file fh that this file handle is now considered

revoked.

Ongoing non-local completion operations on a revoked file handle raise an

exception of class MPI_ERR_REVOKED. Once a file handle has been revoked, all

subsequent non-local operations on the file handle must raise an MPI exception of

class MPI_ERR_REVOKED.

A.4 Error Codes and Classes

The following error classes are added to those defined in Section 8.4:

103

MPI_ERR_PROC_FAILED The operation could not complete
because of a process failure (a fail-stop
failure).

MPI_ERR_REVOKED The communication object used in the
operation has been revoked.

Table A.1: Additional process fault tolerance error classes

A.5 Examples

A.5.1 Master/Worker

The example below presents a master code that handles failures by ignoring failed

processes and resubmitting requests. It demonstrates the different failure cases that

may occur when posting receptions from MPI_ANY_SOURCE as discussed in the advice

to users in Section A.2.2.

int master(void)

{

MPI_Comm_set_errhandler(comm , MPI_ERRORS_RETURN);

MPI_Comm_size(comm , &size);

/* .. submit the initial work requests .. */

MPI_Irecv(buffer , 1, MPI_INT , MPI_ANY_SOURCE ,

tag , comm , &req);

/* Progress engine: Get answers , send new requests ,

and handle process failures */

while((active_workers > 0) && work_available) {

rc = MPI_Wait(&req , &status);

104

if((MPI_ERR_PROC_FAILED == rc) ||

(MPI_ERR_PENDING == rc)) {

MPI_Comm_failure_ack(comm);

MPI_Comm_failure_get_acked(comm , &g);

MPI_Group_size(g, &gsize);

/* .. find the lost work and requeue it .. */

active_workers = size - gsize - 1;

MPI_Group_free (&g);

/* repost the request if it

* matched the failed process */

if(rc == MPI_ERR_PROC_FAILED)

MPI_Irecv(buffer , 1, MPI_INT , MPI_ANY_SOURCE ,

tag , comm , &req);

}

continue;

}

/* .. process the answer and update work_available .. */

MPI_Irecv(buffer , 1, MPI_INT , MPI_ANY_SOURCE ,

tag , comm , &req);

}

/* .. cancel request and cleanup .. */

}

105

A.5.2 Iterative Refinement

The example below demonstrates a method of fault-tolerance to detect and handle

failures. At each iteration, the algorithm checks the return code of the MPI_-

ALLREDUCE. If the return code indicates a process failure for at least one process,

the algorithm revokes the communicator, agrees on the presence of failures, and

later shrinks it to create a new communicator. By calling MPI_COMM_REVOKE, the

algorithm ensures that all processes will be notified of process failure and enter the

MPI_COMM_AGREE. If a process fails, the algorithm must complete at least one more

iteration to ensure a correct answer.

while(gnorm > epsilon) {

/* Add a computation iteration to converge and

compute local norm in lnorm */

rc = MPI_Allreduce(&lnorm , &gnorm , 1,

MPI_DOUBLE , MPI_MAX , comm);

if((MPI_ERR_PROC_FAILED == rc) ||

(MPI_ERR_COMM_REVOKE == rc) ||

(gnorm <= epsilon)) {

if(MPI_ERR_PROC_FAILED == rc)

MPI_Comm_revoke(comm);

/* About to leave: let’s be sure that everybody

received the same information */

allsucceeded = (rc == MPI_SUCCESS);

MPI_Comm_agree(comm , &allsucceeded);

if(!allsucceeded) {

106

/* We plan to join the shrink , thus the

communicator should be marked as revoked */

MPI_Comm_revoke(comm);

MPI_Comm_shrink(comm , &comm2);

/* Release the revoked communicator */

MPI_Comm_free(comm);

comm = comm2;

/* Force one more iteration */

gnorm = epsilon + 1.0;

}

}

}

107

Appendix B

Library Composition

Library composition in fault tolerance is considered an especially difficult problem.

To demonstrate the feasibility of our solution, this appendix includes a sample

implementation of a hierarchy of libraries. This code demonstrates token libraries

to scale and add two vectors. While the function of the libraries is not important,

the initialization and recovery code within the libraries is the key contributed to be

noted here. While this is certainly not the only possible implementation of a library

and probably not even the most efficient, it is a good reference for developers as an

example of how to construct their recovery mechanisms.

B.1 Main application

This is the main code of the application. When a failure occurs in one of the lower

level libraries, they will return control to this library to perform high level recovery

(including repairing the MPI communicators) and then call the repair functions for

the low level libraries before returning to the partially completed function calls.

vector math.c

#include <stdio.h>

108

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include "lib1.h"

#include "lib2.h"

#include "mpi.h"

#include "mpi -ext.h"

void repair(float *v1, float *v2 , float *result , int

size_v , MPI_Comm broken , MPI_Comm* repaired);

char *filename;

enum progression {

START ,

INIT_LIB1_V1 ,

INIT_LIB1_V2 ,

INIT_LIB2 ,

SCALE1 ,

SCALE2 ,

ADD

};

enum progression alg_status = START;

lib1_status_t lib1_status1 , lib1_status2;

lib2_status_t lib2_status;

int main(int argc , char **argv) {

109

FILE *input;

int rank , size;

MPI_Comm parent , *world , *repair_comm;

float *vector1 , *vector2 , *result , *final_total;

int size_vector , temp , ret , old_rank;

char *buffer , *next;

int i, done;

MPI_Status mpi_status;

if (argc < 3) {

fprintf(stderr , "Usage: ./ vector_math

vector1_file vector2_file\n");

exit (1);

}

world = (MPI_Comm *) malloc(sizeof(MPI_Comm));

filename = strdup(argv [1]);

buffer = (char *) malloc(sizeof(char) * 1024);

input = fopen(argv[1], "r");

buffer = fgets(buffer , 1024, input);

/* We don’t do a ton of error checking here. Don’t

let the line length overflow the buffer. You can

use as many lines as you like. Seperate floats by

whitespace. */

110

size_vector = (int) strtol(buffer , &next , 10);

if (size_vector == 0 && buffer == next) {

fprintf(stderr , "Invalid input file\n");

exit (1);

}

buffer = next;

vector1 = (float *) calloc(size_vector ,

sizeof(float));

for (i = 0; i < size_vector; i++) {

vector1[i] = (float) strtod(buffer , &next);

if (buffer == next || NULL == next) {

buffer = fgets(buffer , 1024, input);

if (NULL == next) {

i--;

}

} else {

buffer = next;

}

}

result = (float *) malloc(sizeof(float) *

size_vector);

final_total = (float *) malloc(sizeof(float) *

size_vector);

input = fopen(argv[2], "r");

buffer = fgets(buffer , 1024, input);

111

/* We don’t do a ton of error checking here. Don’t

let the line length overflow the buffer. You can

use as many lines as you like. Seperate floats by

whitespace. */

temp = (int) strtol(buffer , &next , 10);

if (temp == 0 && buffer == next) {

fprintf(stderr , "Invalid input file\n");

exit (1);

}

if (temp != size_vector) {

fprintf(stderr , "Vectors should be the same

size\n");

exit (1);

}

buffer = next;

vector2 = (float *) calloc(size_vector ,

sizeof(float));

for (i = 0; i < size_vector; i++) {

vector2[i] = (float) strtod(buffer , &next);

if (buffer == next || NULL == next) {

buffer = fgets(buffer , 1024, input);

if (NULL == next) {

i--;

}

} else {

buffer = next;

112

}

}

MPI_Init (&argc , &argv);

MPI_Comm_get_parent (& parent);

/* This is not an original process , perform recovery

*/

if (MPI_COMM_NULL != parent) {

/* For now , abort if there is an error. Trying to

handle all of the cases for failure during

startup is unnecessarily complicated. Just

abort the new processes and start over if

there’s a problem. */

MPI_Comm_set_errhandler(parent ,

MPI_ERRORS_ARE_FATAL);

/* Join the rest of the processes */

repair_comm = (MPI_Comm *)

malloc(sizeof(MPI_Comm));

MPI_Intercomm_merge(parent , true , repair_comm);

MPI_Comm_free (& parent);

MPI_Recv (&old_rank , 1, MPI_INT , 0, 31337 ,

*repair_comm , &mpi_status);

113

MPI_Comm_split (* repair_comm , 0, old_rank , world);

MPI_Comm_rank (*world , &rank);

MPI_Comm_size (*world , &size);

size_vector /= (size - 1);

/* Now we will start recovering from failures as

we have one big world again and it is possible

to reason about the status of the comm. */

MPI_Comm_set_errhandler (*world ,

MPI_ERRORS_RETURN);

/* Figure out where we were before we died */

if (MPI_SUCCESS != (ret =

MPI_Allreduce (& alg_status , &alg_status , 1,

MPI_INT , MPI_MAX , *world))) {

/* Perform recovery */

OMPI_Comm_revoke (*world);

repair(vector1 , vector2 , result , size_vector ,

*world , world);

}

/* Perform ABFT recovery */

if (INIT_LIB1_V1 >= alg_status) {

if (MPI_SUCCESS != (ret =

lib1_recovery(vector1 , size_vector ,

*world , &lib1_status1 , 0))) {

114

/* Failure during the library , perform

recovery */

OMPI_Comm_revoke (*world);

repair(vector1 , vector2 , result ,

size_vector , *world , world);

}

} else {

if (MPI_SUCCESS != (ret = lib1_init (*world ,

&lib1_status1))) {

/* Failure during the library , perform

recovery */

OMPI_Comm_revoke (*world);

repair(vector1 , vector2 , result ,

size_vector , *world , world);

}

alg_status = INIT_LIB1_V1;

}

/* Perform ABFT recovery */

if (INIT_LIB1_V2 >= alg_status) {

if (MPI_SUCCESS != (ret =

lib1_recovery(vector2 , size_vector ,

*world , &lib1_status2 , 0))) {

/* Failure during the library , perform

recovery */

OMPI_Comm_revoke (*world);

repair(vector1 , vector2 , result ,

size_vector , *world , world);

115

}

} else {

if (MPI_SUCCESS != (ret = lib1_init (*world ,

&lib1_status2))) {

/* Failure during the library , perform

recovery */

OMPI_Comm_revoke (*world);

repair(vector1 , vector2 , result ,

size_vector , *world , world);

}

alg_status = INIT_LIB1_V2;

}

if (INIT_LIB2 >= alg_status) {

if (MPI_SUCCESS != (ret =

lib2_recovery(result , size_vector , *world ,

&lib2_status , 0))) {

/* Failure during the library , perform

recovery */

OMPI_Comm_revoke (*world);

repair(vector1 , vector2 , result ,

size_vector , *world , world);

}

} else {

if (MPI_SUCCESS != (ret = lib2_init (*world ,

&lib2_status))) {

/* Failure during the library , perform

recovery */

116

OMPI_Comm_revoke (*world);

repair(vector1 , vector2 , result ,

size_vector , *world , world);

}

alg_status = INIT_LIB2;

}

} else {

/* Set the errhandler for MCW so it gets

propagated to all other communicators */

MPI_Comm_set_errhandler(MPI_COMM_WORLD ,

MPI_ERRORS_RETURN);

if (MPI_SUCCESS != (ret =

MPI_Comm_dup(MPI_COMM_WORLD , world))) {

/* Perform recovery */

if (MPI_ERR_PROC_FAILED == ret) {

OMPI_Comm_revoke(MPI_COMM_WORLD);

repair(vector1 , vector2 , result ,

size_vector , MPI_COMM_WORLD , world);

} else if (MPI_ERR_REVOKED == ret) {

repair(vector1 , vector2 , result ,

size_vector , MPI_COMM_WORLD , world);

}

}

if (LIB1_SUCCESS != (ret = lib1_init (*world ,

&lib1_status1))) {

117

/* Failure during the library , perform

recovery */

OMPI_Comm_revoke (*world);

repair(vector1 , vector2 , result , size_vector ,

*world , world);

}

alg_status = INIT_LIB1_V1;

if (LIB1_SUCCESS != (ret = lib1_init (*world ,

&lib1_status2))) {

/* Failure during the library , perform

recovery */

OMPI_Comm_revoke (*world);

repair(vector1 , vector2 , result , size_vector ,

*world , world);

}

alg_status = INIT_LIB1_V2;

if (LIB2_SUCCESS != (ret = lib2_init (*world ,

&lib2_status))) {

/* Failure during the library , perform

recovery */

OMPI_Comm_revoke (*world);

repair(vector1 , vector2 , result , size_vector ,

*world , world);

}

118

alg_status = INIT_LIB2;

MPI_Comm_rank (*world , &rank);

MPI_Comm_size (*world , &size);

if (0 != size_vector % (size -1)) {

fprintf(stderr , "Invalid job size. The size

of the vector needs to be divisible by the

number of processes in the job - 1 (for

checksums).\n");

exit (1);

}

/* Arbitraily divide up the vector to make sure

everyone doesn’t have the same values. This is

only an example after all... */

size_vector /= (size - 1);

vector1 = &vector1[rank * size_vector];

vector2 = &vector2[rank * size_vector];

}

fprintf(stdout , "Vectors loaded ...\n");

for (i = 0; i < size_vector; i++) {

fprintf(stdout , "[%d] %f\t%f\n", rank ,

vector1[i], vector2[i]);

}

119

sleep (1);

#endif

if (SCALE1 >= alg_status) {

if (LIB1_SUCCESS != (ret =

lib1_min_scale_vector(vector1 , size_vector ,

1000, &lib1_status1))) {

/* Failure during the library , perform

recovery */

repair_comm = (MPI_Comm *)

malloc(sizeof(MPI_Comm));

done = 0;

/* Revoke and repair the old communicator */

OMPI_Comm_revoke (*world);

repair(vector1 , vector2 , result , size_vector ,

*world , repair_comm);

MPI_Comm_free(world);

free(world);

world = repair_comm;

}

alg_status = SCALE1;

}

if (SCALE2 >= alg_status) {

120

if (LIB1_SUCCESS != (ret =

lib1_min_scale_vector(vector2 , size_vector ,

1000, &lib1_status2))) {

/* Failure during the library , perform

recovery */

repair_comm = (MPI_Comm *)

malloc(sizeof(MPI_Comm));

done = 0;

/* Revoke and repair the old communicator */

OMPI_Comm_revoke (*world);

repair(vector1 , vector2 , result , size_vector ,

*world , repair_comm);

MPI_Comm_free(world);

free(world);

world = repair_comm;

}

alg_status = SCALE2;

}

if (ADD >= alg_status) {

if (LIB2_SUCCESS != (ret =

lib2_vector_add(vector1 , vector2 , size_vector ,

result , &lib2_status))) {

/* Failure during the library , perform

recovery */

121

repair_comm = (MPI_Comm *)

malloc(sizeof(MPI_Comm));

done = 0;

/* Revoke and repair the old communicator */

OMPI_Comm_revoke (*world);

repair(vector1 , vector2 , result , size_vector ,

*world , repair_comm);

MPI_Comm_free(world);

free(world);

world = repair_comm;

}

alg_status = ADD;

}

if (0 == rank) {

final_total = (float *) malloc(sizeof(float) *

size_vector * size);

}

if (MPI_SUCCESS != (ret = MPI_Gather(result ,

size_vector , MPI_FLOAT , final_total , size_vector ,

MPI_FLOAT , 0, *world))) {

/* Perform recovery */

OMPI_Comm_revoke (*world);

repair(vector1 , vector2 , result , size_vector ,

*world , repair_comm);

122

MPI_Comm_free(world);

free(world);

world = repair_comm;

}

if (0 == rank) {

fprintf(stdout , "\n---Result ---\n");

for (i = 0; i < size_vector * size; i++) {

fprintf(stdout , "%f\n", final_total[i]);

}

}

MPI_Finalize ();

return 0;

}

void repair(float *v1, float *v2 , float *result , int

size_v , MPI_Comm broken , MPI_Comm *repaired) {

MPI_Comm temp , temp_intercomm , temp_intracomm ,

*recursive_repair;

int ret , *errcodes , procs_needed , old_rank , i,

new_rank , old_group_size;

int *temp_ranks , *failed_ranks , *new_ranks;

MPI_Group old_group , failed_group , new_group;

enum progression best_status;

123

/* Get the needed data about the broken communicator

*/

MPI_Comm_size(broken , &old_group_size);

MPI_Comm_group(broken , &old_group);

MPI_Comm_rank(broken , &old_rank);

OMPI_Comm_failure_ack(broken);

OMPI_Comm_failure_get_acked(broken , &failed_group);

MPI_Group_size(failed_group , &procs_needed);

errcodes = (int *) malloc(sizeof(int) * procs_needed);

/* Figure out ranks of the processes which had failed

*/

temp_ranks = (int *) malloc(sizeof(int) *

old_group_size);

failed_ranks = (int *) malloc(sizeof(int) *

old_group_size);

for (i = 0; i < old_group_size; i++) {

temp_ranks[i] = i;

}

MPI_Group_translate_ranks(failed_group , procs_needed ,

temp_ranks , old_group , failed_ranks);

MPI_Group_free (& old_group);

MPI_Group_free (& failed_group);

/* Shrink the broken communicator to remove failed

procs */

OMPI_Comm_shrink(broken , &temp);

124

/* Spawn the new process(es) */

if (MPI_SUCCESS != (ret =

MPI_Comm_spawn("./ vector_math ", NULL ,

procs_needed , MPI_INFO_NULL , 0, temp ,

&temp_intercomm , errcodes))) {

free(temp_ranks);

free(failed_ranks);

free(errcodes);

MPI_Comm_free (&temp);

if (MPI_ERR_PROC_FAILED == ret) {

OMPI_Comm_revoke(temp);

return repair(v1, v2 , result , size_v , broken ,

repaired);

} else if (MPI_ERR_REVOKED == ret) {

return repair(v1, v2 , result , size_v , broken ,

repaired);

} else {

fprintf(stderr , "Unknown error with

MPI_COMM_SPAWN: %d\n", ret);

exit (1);

}

}

free(errcodes);

MPI_Comm_free (&temp);

/* Merge the new processes into a new communicator */

125

if (MPI_SUCCESS != (ret =

MPI_Intercomm_merge(temp_intercomm , 0,

&temp_intracomm))) {

free(temp_ranks);

free(failed_ranks);

MPI_Comm_free (& temp_intercomm);

if (MPI_ERR_PROC_FAILED == ret) {

/* Start the recovery over again if there is

a failure. */

OMPI_Comm_revoke(temp_intercomm);

return repair(v1, v2 , result , size_v , broken ,

repaired);

} else if (MPI_ERR_REVOKED == ret) {

/* Start the recovery over again if there is

a failure. */

OMPI_Comm_revoke(temp_intercomm);

return repair(v1, v2 , result , size_v , broken ,

repaired);

} else {

fprintf(stderr , "Unknown error with

MPI_COMM_SPAWN: %d\n", ret);

exit (1);

}

}

MPI_Comm_free (& temp_intercomm);

/* Tell the new processes what their old ranks were */

MPI_Comm_rank(temp_intracomm , &new_rank);

126

if (0 == new_rank) {

MPI_Comm_group(temp_intracomm , &new_group);

new_ranks = (int *) malloc(sizeof(int) *

procs_needed);

MPI_Group_translate_ranks(new_group ,

procs_needed , temp_ranks , new_group ,

new_ranks);

MPI_Group_free (& new_group);

for (i = 0; i < procs_needed; i++) {

if (MPI_SUCCESS != (ret =

MPI_Send (& failed_ranks[i], 1, MPI_INT ,

new_ranks[i], 31337, temp_intracomm)))

{

free(temp_ranks);

free(failed_ranks);

free(new_ranks);

if (MPI_ERR_PROC_FAILED == ret) {

/* Start the recovery over again if

there is a failure. */

OMPI_Comm_revoke(temp_intercomm);

return repair(v1, v2 , result , size_v ,

broken , repaired);

} else if (MPI_ERR_REVOKED == ret) {

/* Start the recovery over again if

there is a failure. */

OMPI_Comm_revoke(temp_intercomm);

127

return repair(v1, v2 , result , size_v ,

broken , repaired);

} else {

fprintf(stderr , "Unknown error with

MPI_SEND: %d\n", ret);

exit (1);

}

}

}

}

free(temp_ranks);

free(failed_ranks);

free(new_ranks);

/* Everyone move to their old position in the

recovered communicator */

if (MPI_SUCCESS != (ret =

MPI_Comm_split(temp_intracomm , 0, old_rank ,

repaired))) {

if (MPI_ERR_PROC_FAILED == ret) {

/* Start the recovery over again if there is

a failure. */

OMPI_Comm_revoke(temp_intercomm);

return repair(v1, v2 , result , size_v , broken ,

repaired);

} else if (MPI_ERR_REVOKED == ret) {

/* Start the recovery over again if there is

a failure. */

128

OMPI_Comm_revoke(temp_intercomm);

return repair(v1, v2 , result , size_v , broken ,

repaired);

} else {

fprintf(stderr , "Unknown error with

MPI_COMM_SPLIT: %d\n", ret);

exit (1);

}

}

/* If someone has reached this point , we should

recover lib1 */

if (INIT_LIB1_V1 >= best_status) {

if (LIB1_SUCCESS != lib1_recovery(v1, size_v ,

*repaired , &lib1_status1 , (INIT_LIB1_V1 >=

alg_status))) {

recursive_repair = (MPI_Comm *)

malloc(sizeof(MPI_Comm));

OMPI_Comm_revoke (* repaired);

return repair(v1, v2 , result , size_v ,

*repaired , repaired);

}

}

/* If someone has reached this point , we should

recover lib1 */

if (INIT_LIB1_V2 >= best_status) {

129

if (LIB1_SUCCESS != lib1_recovery(v1, size_v ,

*repaired , &lib1_status2 , (INIT_LIB1_V2 >=

alg_status))) {

recursive_repair = (MPI_Comm *)

malloc(sizeof(MPI_Comm));

OMPI_Comm_revoke (* repaired);

return repair(v1, v2 , result , size_v ,

*repaired , repaired);

}

}

/* If someone has reached this point , we should

recover lib1 */

if (INIT_LIB2 >= best_status) {

if (LIB2_SUCCESS != lib2_recovery(result , size_v ,

*repaired , &lib2_status , (INIT_LIB2 >=

alg_status))) {

recursive_repair = (MPI_Comm *)

malloc(sizeof(MPI_Comm));

OMPI_Comm_revoke (* repaired);

return repair(v1, v2 , result , size_v ,

*repaired , repaired);

}

}

alg_status = best_status;

}

130

B.2 Library 1

This section is the header and main code for the first library. This library performs

the scaling operation. Note how the library tracks recovery status by using a status

object which is actually managed by the calling code. This facilitates recover across

instances in cases where a node may be migrated and the data recovered in a new

location.

lib1.h

#ifndef LIB1_H

#define LIB1_H

#include "mpi.h"

struct lib1_status {

/* A flag to keep track of whether or not we should

be recovering */

int recovering;

/* How many iterations are left in the operation */

int iterations_left;

/* The checksum values (only used on the checksum

rank) */

float *checksum;

MPI_Comm lib1_comm_full;

MPI_Comm lib1_comm;

int checksum_rank;

};

typedef struct lib1_status lib1_status_t;

131

int lib1_init(MPI_Comm comm , lib1_status_t *status);

int lib1_recovery(float *v, int size_v , MPI_Comm comm ,

lib1_status_t *status , int correct);

int lib1_min_scale_vector(float *v, int size_v , int

iterations , lib1_status_t *status);

int lib1_finalize(lib1_status_t *status);

#define LIB1_SUCCESS 0

#define LIB1_FAILURE 1

#define LIB1_UNRECOVERABLE 2

#endif

lib1.c

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "mpi.h"

#include "mpi -ext.h"

#include "lib1.h"

int lib1_init(MPI_Comm comm , lib1_status_t *status) {

int rank , size;

status ->recovering = 0;

132

/* Duplicate the communicator to have seperation of

failures between libraries */

if (MPI_SUCCESS != MPI_Comm_dup(comm ,

&status ->lib1_comm_full)) {

/* Revoke the new communicator in case it was

created somehow and return. We’ll try again

from scratch */

OMPI_Comm_revoke(status ->lib1_comm_full);

return LIB1_UNRECOVERABLE;

}

MPI_Comm_rank(status ->lib1_comm_full , &rank);

MPI_Comm_size(status ->lib1_comm_full , &size);

status ->checksum_rank = size - 1;

if (status ->checksum_rank == rank) {

/* Duplicate the communicator to have seperation

of failures between libraries */

if (MPI_SUCCESS !=

MPI_Comm_split(status ->lib1_comm_full ,

MPI_UNDEFINED , rank , &status ->lib1_comm)) {

/* Revoke the new communicator in case it was

created somehow and return. We’ll try

again from scratch */

133

OMPI_Comm_revoke(status ->lib1_comm);

OMPI_Comm_revoke(status ->lib1_comm_full);

return LIB1_UNRECOVERABLE;

}

} else {

/* Duplicate the communicator to have seperation

of failures between libraries */

if (MPI_SUCCESS !=

MPI_Comm_split(status ->lib1_comm_full , 0,

rank , &status ->lib1_comm)) {

/* Revoke the new communicator in case it was

created somehow and return. We’ll try

again from scratch */

OMPI_Comm_revoke(status ->lib1_comm);

OMPI_Comm_revoke(status ->lib1_comm_full);

return LIB1_UNRECOVERABLE;

}

}

return LIB1_SUCCESS;

}

int lib1_recovery(float *v, int size_v , MPI_Comm comm ,

lib1_status_t *status , int correct) {

int ret , size , rank , i;

float *checksums;

134

/* Duplicate the communicator to have seperation of

failures between libraries */

if (MPI_SUCCESS != MPI_Comm_dup(comm ,

&status ->lib1_comm_full)) {

/* Revoke the new communicator in case it was

created somehow and return. We’ll try again

from scratch */

OMPI_Comm_revoke(status ->lib1_comm);

return LIB1_FAILURE;

}

MPI_Comm_size(status ->lib1_comm_full , &size);

MPI_Comm_rank(status ->lib1_comm_full , &rank);

status ->checksum_rank = size - 1;

if (status ->checksum_rank == rank) {

/* Duplicate the communicator to have seperation

of failures between libraries */

if (MPI_SUCCESS !=

MPI_Comm_split(status ->lib1_comm_full ,

MPI_UNDEFINED , rank , &status ->lib1_comm)) {

/* Revoke the new communicator in case it was

created somehow and return. We’ll try

again from scratch */

OMPI_Comm_revoke(status ->lib1_comm);

135

OMPI_Comm_revoke(status ->lib1_comm_full);

return LIB1_FAILURE;

}

} else {

/* Duplicate the communicator to have seperation

of failures between libraries */

if (MPI_SUCCESS !=

MPI_Comm_split(status ->lib1_comm_full , 0,

rank , &status ->lib1_comm)) {

/* Revoke the new communicator in case it was

created somehow and return. We’ll try

again from scratch */

OMPI_Comm_revoke(status ->lib1_comm);

OMPI_Comm_revoke(status ->lib1_comm_full);

return LIB1_FAILURE;

}

}

/* Determine whether there is anything to recover and

inform the new process */

if (MPI_SUCCESS != MPI_Bcast (&status ->recovering , 1,

MPI_INT , status ->checksum_rank ,

status ->lib1_comm_full)) {

OMPI_Comm_revoke(status ->lib1_comm_full);

OMPI_Comm_revoke(status ->lib1_comm);

136

return LIB1_FAILURE;

}

/* Broadcast the ABFT checksum and iterations

remaining and use them to recover */

if (status ->recovering) {

if (status ->checksum_rank != rank) {

status ->checksum = (float *)

malloc(sizeof(float) * size_v);

}

if (MPI_SUCCESS != MPI_Bcast (&status ->checksum ,

size_v , MPI_FLOAT , status ->checksum_rank ,

status ->lib1_comm_full)) {

OMPI_Comm_revoke(status ->lib1_comm_full);

OMPI_Comm_revoke(status ->lib1_comm);

return LIB1_FAILURE;

}

if (rank != status ->checksum_rank) {

checksums = (float *) malloc(sizeof(float) *

size_v);

if (MPI_SUCCESS != (ret = MPI_Allreduce(v,

checksums , size_v , MPI_FLOAT , MPI_SUM ,

status ->lib1_comm))) {

OMPI_Comm_revoke(status ->lib1_comm_full);

137

OMPI_Comm_revoke(status ->lib1_comm);

free(checksums);

return LIB1_FAILURE;

}

if (! correct) {

for (i = 0; i < size_v; i++) {

v[i] = status ->checksum[i] -

checksums[i];

}

}

free(checksums);

}

if (MPI_SUCCESS !=

MPI_Bcast (&status ->iterations_left , 1,

MPI_INT , status ->checksum_rank ,

status ->lib1_comm_full)) {

OMPI_Comm_revoke(status ->lib1_comm_full);

OMPI_Comm_revoke(status ->lib1_comm);

return LIB1_FAILURE;

}

}

return LIB1_SUCCESS;

138

}

int lib1_min_scale_vector(float *v,

int size_v ,

int iterations ,

lib1_status_t *status) {

float local_min , global_min;

int i, ret , rank , size;

MPI_Comm_rank(status ->lib1_comm_full , &rank);

MPI_Comm_size(status ->lib1_comm_full , &size);

if (!status ->recovering) {

status ->iterations_left = iterations;

if (status ->checksum_rank == rank) {

status ->checksum = (float *)

malloc(sizeof(float) * size_v);

}

/* Calculate the initial checksum */

if (MPI_SUCCESS != (ret = MPI_Reduce(v,

status ->checksum , size_v , MPI_FLOAT , MPI_SUM ,

status ->checksum_rank ,

status ->lib1_comm_full))) {

OMPI_Comm_revoke(status ->lib1_comm);

OMPI_Comm_revoke(status ->lib1_comm_full);

139

/* We can’t recover from this error as we

haven’t created the checksum yet */

return LIB1_UNRECOVERABLE;

}

} else {

status ->recovering = 0;

if (0 == status ->iterations_left) {

return LIB1_SUCCESS;

}

}

for (;status ->iterations_left > 0;

status ->iterations_left --) {

if (status ->checksum_rank == rank) {

/* Calculate the min among the local values */

local_min = v[0];

for(i = 1; i < size_v; i++) {

if (local_min > v[i]) {

local_min = v[i];

}

}

/* Calculate the min among all processes */

if (MPI_SUCCESS != (ret =

MPI_Allreduce (&local_min , &global_min , 1,

MPI_FLOAT , MPI_MIN , status ->lib1_comm))) {

140

/* Perform recovery */

status ->recovering = 1;

/* Revoke the internal communicator and

return. */

OMPI_Comm_revoke(status ->lib1_comm);

OMPI_Comm_revoke(status ->lib1_comm_full);

return LIB1_FAILURE;

}

/* Update the checksum */

if (0 == rank) {

if (MPI_SUCCESS != (ret =

MPI_Send (&global_min , 1, MPI_FLOAT ,

status ->checksum_rank , 0,

status ->lib1_comm_full))) {

status ->recovering = 1;

OMPI_Comm_revoke(status ->lib1_comm);

OMPI_Comm_revoke(status ->lib1_comm_full);

return LIB1_FAILURE;

}

}

/* Scale the local vector */

for (i = 0; i < size_v; i++) {

v[i] *= global_min;

141

}

} else {

if (MPI_SUCCESS != (ret =

MPI_Recv (&global_min , 1, MPI_FLOAT , 0, 0,

status ->lib1_comm_full ,

MPI_STATUS_IGNORE))) {

status ->recovering = 1;

OMPI_Comm_revoke(status ->lib1_comm);

OMPI_Comm_revoke(status ->lib1_comm_full);

return LIB1_FAILURE;

}

for (i = 0; i < size_v; i++) {

status ->checksum[i] *= global_min;

}

}

}

return LIB1_SUCCESS;

}

int lib1_finalize(lib1_status_t *status) {

int done = 1, ret;

/* Make sure everyone agrees that the operations were

successful */

142

if (MPI_SUCCESS != (ret =

OMPI_Comm_agree(status ->lib1_comm_full , &done))) {

/* Fail out of this function , the recovering

process will still need us to call the

recovery function to send it the resulting

checksum */

status ->recovering = 1;

OMPI_Comm_revoke(status ->lib1_comm);

OMPI_Comm_revoke(status ->lib1_comm_full);

return LIB1_FAILURE;

}

free(status);

return LIB1_SUCCESS;

}

B.3 Library 2

This section is the header and main code for the second library. This library performs

the addition operation. Again, note how the library tracks recovery status by using a

status object which is actually managed by the calling code. This facilitates recover

across instances in cases where a node may be migrated and the data recovered in a

new location.

lib2.h

#ifndef LIB2_H

143

#define LIB2_H

#include "mpi.h"

struct lib2_status {

int recovering;

int operation_done;

float *checksum;

MPI_Comm lib2_comm;

MPI_Comm lib2_comm_full;

int checksum_rank;

};

typedef struct lib2_status lib2_status_t;

int lib2_init(MPI_Comm comm , lib2_status_t *status);

int lib2_recovery(float *result ,

int size_v ,

MPI_Comm comm ,

lib2_status_t *status ,

int correct);

int lib2_vector_add(float *v1 ,

float *v2,

int size_v ,

float *result ,

lib2_status_t *status);

144

int lib2_finalize(lib2_status_t *status);

#define LIB2_SUCCESS 0

#define LIB2_FAILURE 1

#define LIB2_UNRECOVERABLE 2

#endif

lib2.c

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "mpi.h"

#include "mpi -ext.h"

#include "lib2.h"

int lib2_init(MPI_Comm comm , lib2_status_t *status) {

int rank , size;

status ->recovering = 0;

/* Duplicate the communicator to have seperation of

failures between libraries */

if (MPI_SUCCESS != MPI_Comm_dup(comm ,

&status ->lib2_comm_full)) {

/* Revoke the new communicator in case it was

created somehow and return. We’ll try again

from scratch */

145

OMPI_Comm_revoke(status ->lib2_comm_full);

return LIB2_UNRECOVERABLE;

}

MPI_Comm_rank(status ->lib2_comm_full , &rank);

MPI_Comm_size(status ->lib2_comm_full , &size);

status ->checksum_rank = size - 1;

if (status ->checksum_rank == rank) {

/* Duplicate the communicator to have seperation

of failures between libraries */

if (MPI_SUCCESS !=

MPI_Comm_split(status ->lib2_comm_full ,

MPI_UNDEFINED , rank , &status ->lib2_comm)) {

/* Revoke all communicators and start from

scratch */

OMPI_Comm_revoke(status ->lib2_comm);

OMPI_Comm_revoke(status ->lib2_comm_full);

return LIB2_UNRECOVERABLE;

}

} else {

if (MPI_SUCCESS !=

MPI_Comm_split(status ->lib2_comm_full , 0,

rank , &status ->lib2_comm)) {

OMPI_Comm_revoke(status ->lib2_comm);

146

OMPI_Comm_revoke(status ->lib2_comm_full);

return LIB2_UNRECOVERABLE;

}

}

return LIB2_SUCCESS;

}

int lib2_recovery(float *result , int size_v , MPI_Comm

comm , lib2_status_t *status , int correct) {

int size , i, rank;

float *checksums;

/* Duplicate the communicator to have seperation of

failures between libraries */

if (MPI_SUCCESS != MPI_Comm_dup(comm ,

&status ->lib2_comm_full)) {

/* Revoke the new communicator in case it was

created somehow and return. We’ll try again

from scratch */

OMPI_Comm_revoke(status ->lib2_comm_full);

return LIB2_FAILURE;

}

MPI_Comm_size(status ->lib2_comm_full , &size);

MPI_Comm_rank(status ->lib2_comm_full , &rank);

147

status ->checksum_rank = size -1;

if (status ->checksum_rank == rank) {

/* Duplicate the communicator to have seperation

of failures between libraries */

if (MPI_SUCCESS !=

MPI_Comm_split(status ->lib2_comm_full ,

MPI_UNDEFINED , rank , &status ->lib2_comm)) {

OMPI_Comm_revoke(status ->lib2_comm);

OMPI_Comm_revoke(status ->lib2_comm_full);

return LIB2_FAILURE;

}

} else {

/* Duplicate the communicator to have seperation

of failures between libraries */

if (MPI_SUCCESS !=

MPI_Comm_split(status ->lib2_comm_full , 0,

rank , &status ->lib2_comm)) {

OMPI_Comm_revoke(status ->lib2_comm);

OMPI_Comm_revoke(status ->lib2_comm_full);

return LIB2_FAILURE;

}

}

148

/* Determine whether there is anything to recover and

inform the new process */

if (MPI_SUCCESS != MPI_Bcast (&status ->recovering , 1,

MPI_INT , status ->checksum_rank ,

status ->lib2_comm_full)) {

OMPI_Comm_revoke(status ->lib2_comm_full);

OMPI_Comm_revoke(status ->lib2_comm);

return LIB2_FAILURE;

}

/* Broadcast the ABFT checksum and whether or not we

were done with the

* operation */

if (status ->recovering) {

if (status ->checksum_rank != rank) {

status ->checksum = (float *)

malloc(sizeof(float) * size_v);

}

if (MPI_SUCCESS != MPI_Bcast (&status ->checksum ,

size_v , MPI_FLOAT , status ->checksum_rank ,

status ->lib2_comm)) {

OMPI_Comm_revoke(status ->lib2_comm_full);

OMPI_Comm_revoke(status ->lib2_comm);

return LIB2_FAILURE;

}

149

if (rank != status ->checksum_rank) {

checksums = (float *) malloc(sizeof(float) *

size_v);

if (MPI_SUCCESS != MPI_Allreduce(result ,

checksums , size_v , MPI_FLOAT , MPI_SUM ,

status ->lib2_comm)) {

OMPI_Comm_revoke(status ->lib2_comm_full);

OMPI_Comm_revoke(status ->lib2_comm);

free(checksums);

return LIB2_FAILURE;

}

if (! correct) {

for (i = 0; i < size_v; i++) {

result[i] = status ->checksum[i] -

checksums[i];

}

}

free(checksums);

}

150

if (MPI_SUCCESS !=

MPI_Bcast (&status ->operation_done , 1, MPI_INT ,

status ->checksum_rank ,

status ->lib2_comm_full)) {

OMPI_Comm_revoke(status ->lib2_comm_full);

OMPI_Comm_revoke(status ->lib2_comm);

return LIB2_FAILURE;

}

}

return LIB2_SUCCESS;

}

int lib2_vector_add(float *v1 ,

float *v2,

int size_v ,

float *result ,

lib2_status_t *status) {

int i, rank , size;

float *temp;

MPI_Status mpi_status;

MPI_Comm_rank(status ->lib2_comm_full , &rank);

MPI_Comm_size(status ->lib2_comm_full , &size);

if (!status ->recovering) {

status ->operation_done = 0;

151

if (status ->checksum_rank == rank) {

status ->checksum = (float *) calloc(size_v ,

sizeof(float));

}

} else {

status ->recovering = 0;

if (status ->operation_done) {

return LIB2_SUCCESS;

}

}

temp = (float *) malloc(sizeof(float) * size_v);

if (status ->checksum_rank == rank) {

if (MPI_SUCCESS != MPI_Sendrecv(v1, size_v ,

MPI_FLOAT , (size -1-rank), 31337 , temp , size_v ,

MPI_FLOAT , (size -1-rank), 31337 ,

status ->lib2_comm , &mpi_status)) {

/* Perform recovery */

status ->recovering = 1;

OMPI_Comm_revoke(status ->lib2_comm);

return LIB2_FAILURE;

}

152

for (i = 0; i < size_v; i++) {

result[i] = temp[i] + v2[i];

}

}

/* Update the checksum */

if (MPI_SUCCESS != MPI_Reduce(result ,

status ->checksum , size_v , MPI_FLOAT , MPI_SUM ,

status ->checksum_rank , status ->lib2_comm_full)) {

status ->recovering = 1;

OMPI_Comm_revoke(status ->lib2_comm);

OMPI_Comm_revoke(status ->lib2_comm_full);

return LIB2_UNRECOVERABLE;

}

status ->operation_done = 1;

return LIB2_SUCCESS;

}

int lib2_finalize(lib2_status_t *status) {

int ret , done = 1;

/* Make sure everyone agrees that the operations were

successful */

153

if (MPI_SUCCESS != (ret =

OMPI_Comm_agree(status ->lib2_comm_full , &done))) {

/* Fail out of this function , the recovering

process will still need us to call the

recovery function to send it the resulting

checksum */

status ->recovering = 1;

OMPI_Comm_revoke(status ->lib2_comm);

OMPI_Comm_revoke(status ->lib2_comm_full);

return LIB2_FAILURE;

}

free(status);

return LIB2_SUCCESS;

}

154

Vita

Wesley Bland was born in Knoxville, TN on April 5, 1985. He graduated from

Farragut High School in May of 2003 and began undergraduate studies at Tennessee

Technological University in Cookeville, TN. In 2003 he finished a Bachelor’s degree

in Computer Science and moved back to Knoxville to continue his studies at the

University of Tennessee. During this time, he worked at Oak Ridge National

Laboratory as an intern, primarily in the cluster computing group led by Stephen

L. Scott and the application performance tools group led by Richard Graham. In

2009, Wesley finished his Master’s Degree in Computer Science under Jack Dongarra

in the Innovative Computing Laboratory. He continued to work with George Bosilca’s

team in the ICL on projects related to MPI and Fault Tolerance until completing his

Doctor of Philosophy degree in Computer Science in May 2013.

155

	Front Matter
	Title
	Dedication
	Acknowledgements
	Quote
	Abstract

	Table of Contents
	1 Introduction
	1.1 New Fault Tolerant Approaches
	1.2 Dissertation Statement
	1.3 Outline

	2 Background & Related Work
	2.1 Terminology
	2.1.1 Failure Model

	2.2 Message Passing Interface
	2.2.1 Other Communication Libraries

	2.3 Types of Fault Tolerance
	2.3.1 System-Level vs. User-Level Fault Tolerance
	2.3.2 Checkpoint/Restart
	2.3.3 Migration
	2.3.4 Replication
	2.3.5 Algorithm Based Fault Tolerance
	2.3.6 Transactional Fault Tolerance

	2.4 MPI Level Fault Tolerance
	2.4.1 Open MPI

	2.5 Conclusions

	3 Design Goals
	3.1 Flexibility
	3.2 Resilience
	3.3 Performance
	3.4 Productivity

	4 Checkpoint-on-Failure
	4.1 Existing Error Handling in MPI
	4.2 The Checkpoint-on-Failure Protocol
	4.3 MPI Requirements to support CoF
	4.4 Open MPI Implementation
	4.4.1 Resilient Runtime
	4.4.2 Failure Notification

	4.5 Example: QR-Factorization using CoF
	4.5.1 ABFT QR Factorization
	4.5.2 Checkpoint-on-Failure QR

	4.6 CoF Performance
	4.6.1 MPI Library Overhead
	4.6.2 Failure Detection
	4.6.3 Checkpoint-on-Failure QR Performance

	4.7 Evaluation of CoF

	5 User Level Failure Mitigation
	5.1 ULFM Design
	5.1.1 Failure Reporting
	5.1.2 Rebuilding Communicators
	5.1.3 Failure Discovery
	5.1.4 Wildcard MPI Receive Operations
	5.1.5 Process Consistency

	5.2 Beyond Communicators
	5.2.1 Failure Notification
	5.2.2 ULFM Functions for One-Sided Communication
	5.2.3 ULFM Functions for File I/O

	5.3 ULFM in Applications
	5.3.1 Example: QR-Factorization

	5.4 ULFM Performance
	5.4.1 MPI Overhead
	5.4.2 ABFT-QR Factorization

	5.5 Evaluation of ULFM

	6 Fault Tolerant Applications and Libraries
	6.1 Types of Fault Tolerance
	6.1.1 Automatic Methods
	6.1.2 Algorithm Based Fault Tolerance
	6.1.3 Transactional Fault Tolerance
	6.1.4 Collective Consistency

	6.2 Library Construction
	6.2.1 Initialization
	6.2.2 Status Object
	6.2.3 The Three R's

	7 Future Work and Conclusions
	7.1 Summary
	7.2 Future Work

	Bibliography
	A Process Fault Tolerance
	A.1 Introduction
	A.2 Failure Notification
	A.2.1 Startup and Finalize
	A.2.2 Point-to-Point and Collective Communication
	A.2.3 Dynamic Process Management
	A.2.4 One-Sided Communication
	A.2.5 I/O

	A.3 Failure Mitigation Functions
	A.3.1 Communicator Functions
	A.3.2 One-Sided Functions
	A.3.3 I/O Functions

	A.4 Error Codes and Classes
	A.5 Examples
	A.5.1 Master/Worker
	A.5.2 Iterative Refinement

	B Library Composition
	B.1 Main application
	B.2 Library 1
	B.3 Library 2

	Vita

